LECTURE 10 - THE HEAT EQUATION (II)

Thursday, October 17, 2019 1:10 PM

I- INITIAL-VALUE PROBLEM

Last time: Solved $u_t = k u_{xx}$ and found the "fundamental solution":

$$S(x,t) = \frac{1}{\sqrt{4\pi\kappa t}}$$

Picture: Looks like the bell curve (here t is fixed)

(This is why we have a weird constant in front)

Goal: Solve

$$\begin{cases} u_t = k \ u_{xx} \\ u(x,0) = \phi(x) & \leftarrow \text{Initial Condition} \end{cases}$$

(So initially, the temperature is $\phi(x)$)

It turns out that we can write our solution in terms of S(x,t) (which is why it's so fundamental!)

Guess: $u(x,t) = S(x,t) \phi(x)$

This *almost* works, provided we redefine our notion of multiplication.

In fact: $u(x,t) = S(x,t) * \phi(x)$ where * is convolution!

II- CONVOLUTION

Definition: If f and g are functions, then

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y) g(x-y) dy$$

$$= \int_{-\infty}^{\infty} f(x-y) g(y) dy$$

$$= \int_{-\infty}^{\infty} f(x-y) g(y) dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty$$

Note:

- 1) f * g is a function of \times (not y !)
- 2) The two definitions are equivalent, if you use the usubstitution u = x-y

Example:

$$f(x) = \begin{cases} e^{x} & \text{If } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$g(x) = e^{3x}$$

Then:

$$(f * g)^{(x)} = \int_{-\infty}^{\infty} f(\gamma) g(x-\gamma) d\gamma$$

$$= \int_{0}^{1} e^{\gamma} e^{3(x-\gamma)} d\gamma$$

$$(f = 0 \text{ outside } [0,1])$$

$$= \int_{0}^{1} e^{\gamma} e^{3x} e^{-3\gamma} d\gamma$$

$$= e^{3x} \int_{0}^{1} e^{-2\gamma} d\gamma$$

$$= e^{3x} \left(-\frac{1}{2} e^{-2} + \frac{1}{2}\right)$$

Function of x

Note:

- 1) f * g measures how "similar" f and g are
- f * g is kind of like an analog of polynomial multiplication, but for functions (see last section below, or see YouTube video)

III- SOLVING OUR PDE

Now how does convolution help solve our PDE?

FACT: A solution of

$$\begin{cases} u_t = k u_{xx} \\ u(x,0) = \phi(x) \end{cases}$$

is:
$$u(x,t) = S(x,t) * \phi(x)$$

$$= \int_{-\infty}^{\infty} S(x-\gamma, t) \phi(\gamma) d\gamma$$

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} \frac{-(x-y)^2}{4\kappa t} \phi(y) dy \qquad (*)$$

Note: This is basically the best we can get. We cannot get rid of the integral, except for some special situations:

IV- EXAMPLE

Example: Solve the PDE with $u(x,0) = e^{-x}$ $\phi(x)$

$$U(x,t) = \frac{1}{\sqrt{4\pi\kappa t}} \int_{-\infty}^{\infty} \frac{-(x-y)^2}{4\kappa t} e^{-y} dy$$

$$\phi(y)$$

STEP 2: Focus on exponent

$$-\frac{(x-y)^{2}}{4\kappa t} - y = -\left(\frac{(x-y)^{2} + y}{4\kappa t}\right)$$

$$= -\left(\frac{(x-y)^{2} + 4\kappa t}{4\kappa t}\right)$$

$$= 4\kappa t$$

STEP 3: Focus on numerator

$$(x-y)^{2} + 4Kty = y^{2} - 2xy + x^{2} + 4Kty$$

= $y^{2} + (4Kt - 2x)y + x^{2}$

(complete the square with respect to y, think x = constant)

$$= \left(y + \frac{4kt - 2x}{2} \right)^{2} - \left(\frac{4kt - 2x}{2} \right)^{2} + x^{2}$$

$$= \left(y + 2kt - x \right)^{2} - \left(2kt - x \right)^{2} + x^{2}$$

$$= (7 + 2Kt - X)^{2} - 4K^{2}t^{2} + 4Ktx - X^{2} + X^{2}$$

$$= (7 + 2Kt - X)^{2} + 4Kt(X - Kt)$$

STEP 4: Going back to STEP 2, we get:

$$-\left(\frac{x-y}{4\kappa t}\right)^{2}-y=-\left(\frac{(y+2\kappa t-x)^{2}+4\kappa t(x-\kappa t)}{4\kappa t}\right)$$

$$=-\left(\frac{(y+2\kappa t-x)^{2}}{4\kappa t}-(x-\kappa t)\right)$$

$$=\frac{(y+2\kappa t-x)^{2}}{4\kappa t}$$

This was the exponent of e in our integral

STEP 5: And so, our solution becomes:

$$U(x,t) = \frac{1}{4\pi \kappa t}$$

$$= \frac{1}{4\kappa t}$$

(doesn't depend on y)

$$= \frac{e^{\kappa t - x}}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} -\left(\frac{y + 2\kappa t - x}{\sqrt{4\kappa t}}\right)^{2} dy$$

STEP 6: GRAND FINALE!

u-substitution:

$$P = \frac{y + 2Kt - x}{\sqrt{4Kt}}$$

$$dp = \frac{dy}{\sqrt{4Kt}} \implies dy = \sqrt{4Kt} dp$$

$$p(-\omega) = -\omega , \quad p(\omega) = \omega$$

$$U(x,t) = \frac{e^{\kappa t - x}}{\sqrt{4\pi \kappa y}} \int_{-\infty}^{\infty} e^{-p^{2}} \sqrt{\kappa t} dp$$

$$= \frac{e^{Kt-x}}{\sqrt{n}} \int e^{-p^2} dp$$

$$U(x,t) = C$$

(Solves $u_t = k u_{xx}$ with $u(x,0) = e^{-x}$)

V- WHY THIS WORKS

Why does $u(x,t) = S(x,t) * \phi(x)$ solve

$$\begin{cases} u_t = k u_{xx} & ? \\ u(x,0) = \phi(x) & \end{cases}$$

Actual proof is difficult, but here's some intuition as to why it should be true

Let
$$u(x,t) = \int_{-\infty}^{\infty} S(x-y,t) \phi(y) dy$$

PART 1: Check ut = k uxx

$$u_{\dagger} = \left(\int_{-\infty}^{\infty} \mathcal{S} \, \phi \right) = \int_{\mathbb{R}}^{\infty} \mathcal{S}_{\mathcal{E}} \, \phi$$

And
$$u_{xx} = \left(\int_{-\mathbf{x}} \mathbf{y} \right) = \int_{\mathbf{x}x} \mathbf{y} dx$$

(technically use the Chain Rule)

Hence:
$$u_{t} - k u_{xx} = \int_{-\infty}^{\infty} \left(S_{t} - K S_{xx} \right) \phi = 0$$

$$= \int_{-\infty}^{\infty} \left(S_{t} - K S_{xx} \right) \phi = 0$$
(Since S solves the heat equation)

STEP 2: Check
$$u(x,0) = \phi(x)$$

Question: What happens to S(x,t) as $t \rightarrow 0^+$?

Notice the following:

1) If
$$x \neq 0$$
, then

$$S(x,t) = \frac{1}{\sqrt{4\pi kt}} e^{-\frac{x^2}{4\kappa t}} e^{-\frac{x^2}{4\kappa t}} \xrightarrow{E \to 0^+} O$$
(IF x \pm to)

2) If x = 0, then

$$S(o,t) = \frac{1}{\sqrt{4\pi \kappa t}}$$

3) Finally,

$$\int_{-\infty}^{\infty} S(x,t) dx = 1$$

Which is true even if t -> 0+

So basically S(x,0) is 0 everywhere, but has an infinite spike at x = 0, and total area = 1.

Picture: 5(x₁0)

So S(x,0) - $\delta_0(x)$ where δ_0 is the Dirac Delta Functional which satisfies:

- 1) $\delta_0(x) = 0$ if x is not 0
- 2) $\delta_0(0)$ = infinity
- 3) δ_0 has integral 1

Therefore:

$$u(x,0) = S(x,0) * \phi(x)$$

= $\delta_0(x) * \phi(x)$

$$= \int_{-\infty}^{\infty} \delta_0(y) \, \phi(x-y) \, dy$$

$$= \int_{-\infty}^{\infty} \delta_0(y) \, \phi(x-y) \, dy$$
O except if $y = 0$

$$= \int_{-\infty}^{\infty} \int_{0}^{\infty} \varphi(x-0) dy$$

$$=\int_{-\infty}^{\infty}\delta_{0}\left(\phi(x)\right)dy$$

$$= \phi(x) \int_{-\infty}^{\infty} \delta \cdot d\gamma$$

$$= \phi(x)$$

So indeed we get $u(x,0) = \phi(x)$

VI- CONVOLUTION INTUITION (optional)

Suppose
$$f(x) = a_2 x^2 + a_1 x + a_0$$
 and $g(x) = b_2 x^2 + b_1 x + b_0$

Find the coefficient of x^2 in f(x) g(x)

$$f(x) g(x) = (a_2 b_0 + a_1 b_1 + a_0 b_2) x^2 + other terms$$

So the coefficient of x^2 is:

$$a_0 b_2 + a_1 b_1 + a_2 b_0$$

= $a_0 b_{2-0} + a_1 b_{2-1} + a_2 b_{2-2}$

=
$$\sum_{i=0}^{2} a_{i} b_{2-i}$$

In general, the coefficient of x^k in f(x) g(x) is:

Compare to:

$$(f*g)(x) = \int_{-\infty}^{\infty} f(\gamma) g(x-\gamma) d\gamma$$

$$\int_{-\infty}^{\infty} f(\gamma) g(x-\gamma) d\gamma$$

$$\int_{-\infty}^{\infty} f(\gamma) g(x-\gamma) d\gamma$$

So $f * g$ is kind of like the x^{th} coefficient in the product of f
and g (if you think of them as polynomials)