LECTURE 10 - THE HEAT EQUATION (II)

I- INITIAL-VALUE PROBLEM

Last time: Solved $u_{+}=k u_{x x}$ and found the "fundamental solution" :

$$
S(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}}
$$

Picture: Looks like the bell curve (here t is fixed)

(This is why we have a weird constant in front)

Goal: Solve

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \\
u(x, 0)=\phi(x) \quad<- \text { Initial Condition }
\end{array}\right.
$$

(So initially, the temperature is $\phi(x)$)

It turns out that we can write our solution in terms of $S(x, t)$ (which is why it's so fundamental!)

Guess: $u(x, t)=S(x, t) \phi(x)$
This *almost* works, provided we redefine our notion of multiplication.

In fact: $u(x, t)=S(x, t) * \phi(x)$ where $*$ is convolution!

II- CONVOLUTION

Definition: If f and g are functions, then

$$
\begin{aligned}
&(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y \\
&=\int_{-\infty}^{\infty} f(x-y) g(y) d y \\
& \text { suM }=x
\end{aligned}
$$

Note:

1) $f * g$ is a function of x (not y !)
2) The two definitions are equivalent, if you use the usubstitution $u=x-y$

Example:

$$
\begin{aligned}
& f(x)= \begin{cases}e^{x} & \text { IF } 0 \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& g(x)=e^{3 x}
\end{aligned}
$$

Then:

$$
\begin{aligned}
(f * g)(x) & =\int_{-\infty}^{\infty} f(y) g(x-y) d y \\
& =\int_{0}^{1} e^{y} e^{3(x-y)} d y \\
& (f=0 \text { outside }[0,1]) \\
& =\int_{0}^{1} e^{y}\left(e^{3 x} e^{-3 y} d y\right. \\
& =e^{3 x} \int_{0}^{1} e^{-2 y} d y \\
& =e^{3 x}\left(-\frac{1}{2} e^{-2}+\frac{1}{2}\right) \\
& \underbrace{}_{\text {Function of } x}
\end{aligned}
$$

Note:

1) $f * g$ measures how "similar" f and g are
2) $f * g$ is kind of like an analog of polynomial multiplication, but for functions (see last section below, or see YouTube video)

Now how does convolution help solve our PDE?
FACT: A solution of

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

is: $\quad u(x, t)=S(x, t) * \phi(x)$

$$
\begin{align*}
& =\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y \\
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^{2}}{4 k t}} \phi(y) d y \tag{*}
\end{align*}
$$

Note: This is basically the best we can get. We cannot get rid of the integral, except for some special situations:

IV- EXAMPLE

Example: Solve the PDE with $u(x, 0)=\underbrace{e^{-x}}_{\phi(x)}$

STEP 1:

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \underbrace{e^{-y}}_{\phi(y)} d y
$$

STEP 2: Focus on exponent

$$
\begin{aligned}
-\frac{(x-y)^{2}}{4 k t}-y & =-\left(\frac{(x-y)^{2}}{4 k t}+y\right) \\
& =-\left(\frac{(x-y)^{2}+4 k t y}{4 k t}\right)
\end{aligned}
$$

STEP 3: Focus on numerator

$$
\begin{aligned}
(x-y)^{2}+4 k t y & =y^{2}-2 x y+x^{2}+4 k t y \\
& =y^{2}+(4 k t-2 x) y+x^{2}
\end{aligned}
$$

(complete the square with respect to y, think $x=$ constant)

$$
\begin{aligned}
& =\left(y+\frac{4 K t-2 x}{2}\right)^{2}-\left(\frac{4 K t-2 x}{2}\right)^{2}+x^{2} \\
& =(y+2 k t-x)^{2}-(2 k t-x)^{2}+x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(y+2 k t-x)^{2}-4 k^{2} t^{2}+4 k t x-\not x^{2}+x^{2} \\
& =(y+2 k t-x)^{2}+4 k t(x-k t)
\end{aligned}
$$

STEP 4: Going back to STEP 2, we get:

$$
\begin{gathered}
-\frac{(x-y)^{2}}{4 k t}-y=-\left(\frac{(y+2 k t-x)^{2}+4 k t(x-k t)}{4 k t}\right) \\
=-\frac{(y+2 k t-x)^{2}}{4 k t}-(x-k t)
\end{gathered}
$$

This was the exponent of e in our integral
STEP 5: And so, our solution becomes:

$$
\begin{aligned}
U(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{\frac{-(y+2 k t-x)^{2}}{4 k t}-(x-k t)} d y \\
& =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(y+2 k t-x)^{2}}{4 k t}} e^{k t-x} d y
\end{aligned}
$$

$$
=\frac{e^{k t-x}}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(\underbrace{\frac{y+2 k t-x}{\sqrt{4 k t}}}_{p})^{2} d y} d y
$$

STEP 6: GRAND FINALE!
u-substitution:

$$
\begin{aligned}
p & =\frac{y+2 k t-x}{\sqrt{4 K t}} \\
d p & =\frac{d y}{\sqrt{4 k t}} \Rightarrow d y=\sqrt{4 k t} d p \\
p(-\infty) & =-\infty, p(\infty)=\infty \\
u(x, t) & =\frac{e^{k t-x}}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-p^{2}} \sqrt{4 k t} d p \\
& =\frac{e^{k t-x}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}} d p
\end{aligned}
$$

$$
U(x, t)=e^{k t-x}
$$

TA-DAAAA!!!
(Solves $u_{t}=k u_{x x}$ with $u(x, 0)=e^{-x}$)

V- WHY THIS WORKS

Why does $u(x, t)=S(x, t) * \phi(x)$ solve

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Actual proof is difficult, but here's some intuition as to why it should be true

Let $u(x, t)=\int_{-\infty}^{\infty} s(x-y, t) \phi(y) d y$

PART 1: Check $u_{t}=k u_{x x}$

$$
u_{t}=\left(\int_{-\infty}^{\infty} S \phi\right)_{t}=\int_{-\infty}^{\infty} S_{t} \phi
$$

And

$$
u_{x x}=\left(\int_{-\infty}^{\infty} S \phi\right)_{x x}=\int_{-\infty} S_{x x} \phi
$$

(technically use the Chain Rule)

Hence:

$$
\begin{aligned}
u_{t}-k u_{x x} & =\int_{-\infty}^{\infty} S_{t} \phi-k S_{x x} \phi \\
& =\int_{-\infty}^{\infty}(\underbrace{S_{t}-k S_{x x}}_{0}) \phi=0
\end{aligned}
$$

(Since S solves the heat equation)

STEP 2: Check $u(x, 0)=\phi(x)$
Question: What happens to $S(x, t)$ as $t \rightarrow 0^{+}$?

Notice the following:

1) If $x \neq 0$, then

$$
S(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}} \rightarrow 0
$$

2) If $x=0$, then

$$
S(0, t)=\frac{1}{\sqrt{4 \pi k t}} \xrightarrow{t \rightarrow 0^{+}} \infty
$$

3) Finally,

$$
\int_{-\infty}^{\infty} s(x, t) d x=1
$$

Which is true even if $\dagger \rightarrow 0^{+}$

So basically $S(x, 0)$ is 0 everywhere, but has an infinite spike at $x=0$, and total area $=1$.

Picture:

So $S(x, 0)-\delta_{0}(x)$ where δ_{0} is the Dirac Delta Functional which satisfies:

1) $\delta_{0}(x)=0$ if x is not 0
2) $\delta_{0}(0)=$ infinity
3) δ_{0} has integral 1

Therefore:

$$
\begin{aligned}
u(x, 0) & =S(x, 0) * \phi(x) \\
& =\delta_{0}(x) * \phi(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \underbrace{\delta_{0}(y)}_{\text {O except if } y=0} \phi(x-y) d y \\
& =\int_{-\infty}^{\infty} \int_{\delta_{0}}^{\infty} \phi(x-0) d y \\
& =\underbrace{\int_{-\infty}^{\infty}}_{\phi(x)} \underbrace{\infty}_{1} d(x) \\
& =1
\end{aligned}
$$

So indeed we get $u(x, 0)=\phi(x)$

Suppose $f(x)=a_{2} x^{2}+a_{1} x+a_{0}$ and $g(x)=b_{2} x^{2}+b_{1} x+b_{0}$
Find the coefficient of x^{2} in $f(x) g(x)$

$$
f(x) g(x)=\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) x^{2}+\text { other terms }
$$

So the coefficient of x^{2} is:

$$
\begin{aligned}
& a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} \\
& =a_{0} b_{2-0}+a_{1} b_{2-1}+a_{2} b_{2-2}
\end{aligned}
$$

$$
=\sum_{i=0}^{2} a_{i} b_{2-i}
$$

In general, the coefficient of x^{k} in $f(x) g(x)$ is:

Compare to:

$$
(f * g)(x)=\int_{\text {SUM }=x}^{\infty} f(y(x-y) d y
$$

So $f * g$ is kind of like the $x^{\text {th }}$ coefficient in the product of f and g (if you think of them as polynomials)

