LECTURE 11: HEAT EQUATION PROPERTIES (I)

Friday, October 18, 2019 6:38 PM

Now that we've seen how to solve the heat equation, let's discuss some more general properties of this equation.

Note: At **NO** point are we using the fundamental solution or convolution! All our properties hold true for **any** solution of the heat equation!

In PDE, there are two main classes of methods:

- 1) Energy methods
- 2) Maximum principle methods

Today: Energy methods

I- ENERGY METHOD

Based on multiplying your PDE by a function and integrating by parts.

Consider a finite rod of length I with initial temperature 0 and 0 boundary conditions (= Insulated at endpoints

Picture: t fixed

Consider:

$$\begin{cases} u_t = k u_{xx} & (0 < x < l, t > 0) \\ u(x,0) = 0 & \Leftarrow \text{Initially} \\ u(0,t) = 0, u(l,t) = 0 & \Leftarrow \text{At endpoints} \end{cases}$$

Claim: u(x,t) = 0 for ALL x and t

Note: Compare with $Ax = 0 \Rightarrow x = 0$ in linear algebra Here we're saying that $Lu = 0 \Rightarrow u = 0$, where L is our PDE with initial/boundary conditions

Why? Energy method!

STEP 1:

Start with:

$$u_t = k u_{xx}$$

Multiply both sides of the PDE by u:

$$u_t u = k u_{xx} u$$

And integrate with respect to x on [0,1]:

$$\int_{\mathbf{u}_{1}}^{\mathbf{u}_{1}} \mathbf{u} \, d\mathbf{x} = \mathbf{k} \int_{\mathbf{u}_{xx}}^{\mathbf{u}_{1}} \mathbf{u} \, d\mathbf{x}$$

$$(A) \qquad (B)$$

STEP 2:

Study of A:

$$\int_{0}^{\ell} U_{\ell} U dx = \int_{0}^{\ell} \frac{1}{2} \frac{d}{dt} (U)^{2} dx$$

$$= \frac{d}{dt} \left[\frac{1}{2} \int_{0}^{\ell} U^{2} dx \right]$$

STEP 3:

Study of B: Integrate by parts with respect to x to get (here boundary terms might matter)

Analogy:

$$\int_{a}^{b} f''g = f'(b)g(b) - f'(a)g(a) - \int_{a}^{b} f'g'$$

$$\int_{0}^{2} U_{xx} U dx$$

$$= U_{x} (l, l) U(l, l) - U_{x} (o, l) U(o, l)$$

$$- \int_{0}^{2} U_{x} U_{x} dx$$

(Because u(0,t) = u(1,t) = 0 by the boundary condition)

$$= - \int_{0}^{\ell} (Ux)^{2} dx$$

STEP 4:

$$\frac{d}{dt} \left[\frac{1}{2} \int_{0}^{l} U^{2} dx \right] = K \left(-\int_{0}^{l} (Ux) dx \right)$$

$$E(t)$$

$$\leq 0 /$$

Therefore: E'(t) \$ 0

In particular, the energy

$$E(t) = \frac{1}{2} \int_{0}^{\ell} (U(x,t))^{2} dx \quad \text{is decreasing!}$$

(Interpretation: Heat is dissipative. An insulated metal rod generally gets cooler with time)

So
$$E(t) \leqslant E(0)$$

Therefore:

$$\frac{1}{2} \int_{0}^{2} \left(U(x,t) \right)^{2} dx \leq \frac{1}{2} \int_{0}^{2} \left(U(x,0) \right)^{2} dx \tag{*}$$

STEP 5:

BUT u(x,0) = 0 (by the initial condition!)

Therefore:

$$0 \leq \frac{1}{2} \int_{0}^{1} \left(U(x,t) \right) dx \leq 0$$

Which implies that in fact:

$$\frac{1}{2} \int_{0}^{L} \left(U(x,t) \right)^{2} dx = 0$$

$$7,0$$

But the only way that the area under a positive function is 0 is if the function is the zero function!

Hence $(u(x,t))^2 = 0$ for all x, so u(x,t) = 0 for all x (and all t)

II- UNIQUENESS

Consequence:

There is at most one solution of:

$$\begin{cases} u_t - k u_{xx} = f(x,t) & \leftarrow \text{Inhomogeneous (forcing) term} \\ u(x,0) = \phi(x) & \leftarrow \text{Initial Profile} \\ u(0,t) = g(t), u(l,t) = h(t) & \leftarrow \text{Endpoints} \end{cases}$$

Why?

Suppose u and v are two solutions, and consider w = u - v

Then
$$w_t = (u-v)_t = u_t - v_t = (k u_{xx} + f) - (k v_{xx} + f)$$

= $k u_{xx} + f - k v_{xx} - f$
= $k(u-v)_{xx}$
= $k w_{xx}$

So w satisfies $w_t = k w_{xx}$

Moreover
$$w(x,0) = (u-v)(x,0) = u(x,0) - v(x,0) = \phi(x) - \phi(x) = 0$$

$$w(0,t) = u(0,t) - v(0,t) = g(t) - g(t) = 0$$

 $w(l,t) = u(l,t) - v(l,t) = h(t) - h(t) = 0$

So w satisfies:

$$w_{t} = k w_{xx}$$

 $w(x,0) = 0$
 $w(0,t) = 0, w(l,t) = 0$

Therefore, by the previous fact, w(x,t) = 0

That is, u(x,t) - v(x,t) = 0

So u(x,t) = v(x,t), so u = v

Interesting Sidenote:

For the infinite rod where -infinity $\langle x \rangle$ infinity (which we've considered last time), we **DON'T** have uniqueness, and in fact there are **MANY** solutions of $u_t = k u_{xx}$ with $u(x,0) = \phi(x)$.

So u(x,t) = S(x,t) * F(x) is a solution, but there are many other ones!

BUT it turns out that there is only one solution among the ones with the property that $u(x,t) \le C \exp(ax^2)$ for some C > 0 and a > 0

All the other solutions grow **FASTER** than C exp(ax²), which isn't very realistic physically!

III- STABILITY

Recall the big 3 questions of PDE

- 1) Existence (which we've shown for the infinite rod in 2.4, and will show for the rod of length 1 in Chapters 4 & 5)
- 2) Uniqueness (already shown)
- 3) Stability: If the initial conditions are close, then our solutions are close.

Suppose u and v solve the same PDE

$$u_t = k u_{xx} + f(x,t)$$

 $u(0,t) = g(t), u(l,t) = h(t)$

But
$$u(x,0) = \phi_1(x)$$
 and $v(x,0) = \phi_2(x)$

Where ϕ_1 and ϕ_2 are "close".

Then are u(x,t) and v(x,t) close as well?

YES!

Why? Let
$$w = u - v$$

Then w satisfies

$$\begin{cases} w_{t} = k w_{xx} \\ w(0,t) = 0, w(1,t) = 0 \\ w(x,0) = \phi_{1}(x) - \phi_{2}(x) \end{cases}$$

Note: In the energy method, we didn't use the initial condition until the very end.

In particular, (*) is still true! (with w instead of u):

$$\int_{0}^{2} \left(W(x,t)\right)^{2} dx \leq \int_{0}^{2} \left(W(x,0)\right)^{2} dx$$

$$\int_{0}^{\infty} \left(U(x,t) - V(x,t) \right)^{2} dx \leq \int_{0}^{\infty} \left(\phi_{1}(x) - \phi_{2}(x) \right)^{2} dx$$

Only depends on ϕ_1 - ϕ_2

In particular, if ϕ_1 and ϕ_2 are close, then ϕ_1 - ϕ_2 is small, therefore, by the above, u - v is small, so u and v are close!

So indeed we have stability, but in an integral sense!

Next time: Maximum principle methods!