LECTURE 11: HEAT EQUATION PROPERTIES (I)

Now that we've seen how to solve the heat equation, let's discuss some more general properties of this equation.

Note: At NO point are we using the fundamental solution or convolution! All our properties hold true for any solution of the heat equation!

In PDE, there are two main classes of methods:

1) Energy methods
2) Maximum principle methods

Today: Energy methods

I- ENERGY METHOD

Based on multiplying your PDE by a function and integrating by parts.
Consider a finite rod of length I with initial temperature 0 and 0 boundary conditions (= Insulated at endpoints

Picture: † fixed

$U(0, t)$
$u(\ell, t)$

Consider:

$$
\left\{\begin{array}{lc}
u_{t}=k u_{x x} \quad(0<x<1, t>0) \\
u(x, 0)=0 & <=\text { Initially } \\
u(0, t)=0, u(1, t)=0 & <=\text { At endpoints }
\end{array}\right.
$$

Claim: $u(x, t)=0$ for ALL x and t
Note: Compare with $A x=0 \Rightarrow x=0$ in linear algebra Here we're saying that $L u=0 \Rightarrow u=0$, where L is our PDE with initial/boundary conditions

Why? Energy method!

STEP 1:

Start with:

$$
u_{t}=k u_{x x}
$$

Multiply both sides of the PDE by u:

$$
u_{t} u=k u_{x x} u
$$

And integrate with respect to \times on [0,1]:

STEP 2:

Study of A:

$$
\begin{aligned}
\int_{0}^{l} U_{t} u d x & =\int_{0}^{l} \frac{1}{2} \frac{d}{d t}(U)^{2} d x \\
& =\frac{d}{d t}\left[\frac{1}{2} \int_{0}^{l} u^{2} d x\right]
\end{aligned}
$$

STEP 3:

Study of B: Integrate by parts with respect to x to get (here boundary terms might matter)

Analogy:

$$
\int_{a}^{b} f^{\prime \prime} g=f^{\prime}(b) g(b)-f^{\prime}(a) g(a)-\int_{a}^{b} f^{\prime} g^{\prime}
$$

Here:

$$
\begin{aligned}
& \int_{0}^{l} U_{x x} U d x \\
= & U_{x}(l, t) U(l, t)-U_{x}(0, t) U(0, t) \\
& -\int_{0}^{l} U_{x} U_{x} d x
\end{aligned}
$$

(Because $u(0, t)=u(1, t)=0$ by the boundary condition)

$$
=-\int_{0}^{l}\left(U_{x}\right)^{2} d x
$$

STEP 4:
So (A) $=k$ (B) says:

$$
\frac{d}{d t}[\underbrace{\left.\frac{1}{2} \int_{0}^{l} U^{2} d x\right]}_{E(t)}=k \underbrace{k\left(-\int_{0}^{l}(U x)^{2} d x\right)}_{\leqslant 0!}
$$

Therefore: $E^{\prime}(t) \leqslant 0$

In particular, the energy
$E(t)=\frac{1}{2} \int_{0}^{\ell}(U(x, t))^{2} d x$ is decreasing!
(Interpretation: Heat is dissipative. An insulated metal rod generally gets cooler with time)

So

$$
E(t) \leqslant E(0)
$$

Therefore:

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{\ell}(u(x, t))^{2} d x \leq \frac{1}{2} \int_{0}^{l}(u(x, 0))^{2} d x \tag{*}
\end{equation*}
$$

STEP 5:

BUT $u(x, 0)=0$ (by the initial condition!)

Therefore:

$$
0 \leqslant \frac{1}{2} \int_{0}^{l} \underbrace{u(x, t)}_{\geqslant 0})^{2} d x \leq 0
$$

Which implies that in fact:

$$
\frac{1}{2} \int_{0}^{l} \underbrace{u(x, t)}_{\geqslant 0})^{2} d x=0
$$

But the only way that the area under a positive function is 0 is if the function is the zero function!

Hence $(u(x, t))^{2}=0$ for all x, so $u(x, t)=0$ for all x (and all t)

II- UNIQUENESS

Consequence:

There is at most one solution of:

$$
\begin{cases}u_{t}-k u_{x x}=f(x, t) & \text { <- Inhomogeneous (forcing) term } \\ u(x, 0)=\phi(x) & \text { <- Initial Profile } \\ u(0, t)=g(t), u(1, t)=h(t) & \text { <- Endpoints }\end{cases}
$$

$g(t)$
$h(t)$

Why?
Suppose u and v are two solutions, and consider $w=u-v$

$$
\begin{aligned}
& \text { Then } w_{t}=(u-v)_{+}=u_{t}-v_{t}=\left(k u_{x x}+f\right)-\left(k v_{x x}+f\right) \\
& =k u_{x x}+f-k v_{x x}-f \\
& =k(u-v)_{x x} \\
& =k w_{x x}
\end{aligned}
$$

So w satisfies $w_{+}=k w_{x x}$
Moreover $w(x, 0)=(u-v)(x, 0)=u(x, 0)-v(x, 0)=\phi(x)-\phi(x)=0$

$$
\begin{aligned}
& w(0, t)=u(0, t)-v(0, t)=g(t)-g(t)=0 \\
& w(1, t)=u(1, t)-v(1, t)=h(t)-h(t)=0
\end{aligned}
$$

So w satisfies:
$w_{+}=k w_{x x}$
$w(x, 0)=0$
$w(0, t)=0, w(1, t)=0$

Therefore, by the previous fact, $w(x, t)=0$

That is, $u(x, t)-v(x, t)=0$

So $u(x, t)=v(x, t)$, so $u=v$

Interesting Sidenote:

For the infinite rod where -infinity < x < infinity (which we've considered last time), we DON'T have uniqueness, and in fact there are MANY solutions of $u_{t}=k u_{x x}$ with $u(x, 0)=\phi(x)$.

So $u(x, t)=S(x, t) * F(x)$ is a solution, but there are many other ones!

BUT it turns out that there is only one solution among the ones with the property that $u(x, t) \leqslant C \exp \left(a x^{2}\right)$ for some $C>0$ and $a>0$

All the other solutions grow FASTER than $C \exp \left(a x^{2}\right)$, which isn't very realistic physically!

III- STABILITY

Recall the big 3 questions of PDE

1) Existence (which we've shown for the infinite rod in 2.4, and will show for the rod of length 1 in Chapters 4 \& 5)
2) Uniqueness (already shown)
3) Stability: If the initial conditions are close, then our solutions are close.

Suppose u and v solve the same PDE

$$
\begin{aligned}
& u_{t}=k u_{x x}+f(x, t) \\
& u(0, t)=g(t), u(1, t)=h(t)
\end{aligned}
$$

But $u(x, 0)=\phi_{1}(x)$ and $v(x, 0)=\phi_{2}(x)$
Where ϕ_{1} and ϕ_{2} are "close".

Then are $u(x, t)$ and $v(x, t)$ close as well?

YES!
Why? Let $w=u-v$
Then w satisfies

$$
\left\{\begin{array}{l}
w_{t}=k w_{x x} \\
w(0, t)=0, w(1, t)=0 \\
w(x, 0)=\phi_{1}(x)-\phi_{2}(x)
\end{array}\right.
$$

Note: In the energy method, we didn't use the initial condition until the very end.
In particular, (*) is still true! (with w instead of u):

$$
\frac{1}{2} \int_{0}^{l}(w(x, t))^{2} d x \leq \frac{1}{2} \int_{0}^{l}(w(x, 0))^{2} d x
$$

Only depends on $\phi_{1}-\phi_{2}$

In particular, if ϕ_{1} and ϕ_{2} are close, then $\phi_{1}-\phi_{2}$ is small, therefore, by the above, $u-v$ is small, so u and v are close!

Picture:

So indeed we have stability, but in an integral sense!

Next time: Maximum principle methods!

