LECTURE 11: HEAT EQUATION PROPERTIES (I)
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Now that we've seen how to solve the heat equation, let's discuss
some more general properties of this equation.

Note: At NO point are we using the fundamental solution or
convolution! All our properties hold true for any solution of the heat
equation!

In PDE, there are two main classes of methods:

1) Energy methods
2) Maximum principle methods

Today: Energy methods

I- ENERGY METHOD
Based on multiplying your PDE by a function and integrating by parts.

Consider a finite rod of length | with initial temperature O and O
boundary conditions (= Insulated at endpoints
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Consider:

Ut = K Uxx (O<x<I,t>0)
u(x,0)=0 <= Initially
u©O1)=0,u(l,t)=0 <= At endpoints

Claim: u(x,t) = O for ALL x and t

Note: Compare with Ax = 0 => x = O in linear algebra
Here we're saying that Lu = 0 =>u = O, where L is our PDE with
initial/boundary conditions

Why? Energy method!

STEP L.

Start with:
Ut = K Uxx

Multiply both sides of the PDE by u:
Ut U = K Uxx U

And integrate with respect to x on [O,I]:
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Study of B: Integrate by parts with respect to x to get
(here boundary terms might matter)

Analogy:
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Here:
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(Because u(0,t) = u(l,t) = O by the boundary condition)

s =~ /Q(Ux)ldx

Therefore: E'(t) £ O



In particular, the energy
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(Interpretation: Heat is dissipative. An insulated metal rod
generally gets cooler with time)
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So E(t) £ E(0)

Therefore:
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STEP 5:



BUT u(x,0) = O (by the initial conditionl)

Therefore:

|
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Which implies that in fact:
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But the only way that the area under a positive function is O is if
the function is the zero function!

Hence (u(x,1))? = 0 for all x, so u(x,t) = O for all x (and all 1)

IT- UNIQUENESS

Consequence:



There is at most one solution of:

Ur - K uxx = f(x,1) <- Inhomogeneous (forcing) term
u(x,0) = ¢(x) <- Initial Profile
u(0,t) = g(t), u(l,t) = h(t)  <- Endpoints

0
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Why?
Suppose u and v are two solutions, and consider w = u - v

Then wi = (U-V); = Ut - V¢ = (K Uxx + ) - (K vxx + f)
SKkuxx+f-kvux - f

= k(u-Vv)xx

= Kk wxx

So w satisfies wi = k wxx
Moreover w(x,0) = (u-v)(x,0) = u(x,0) - v(x,0) = ¢(x) - ¢(x) =0

wO 1) =ulO1)-v(0Ot)=g(t)-g(+)=0
w(l,t)=u(l,¥)-v(l,H)=h(t)-h(t)=0



So w satisfies:

Wi = K Wxx

w(x,0)=0

wO1)=0,w(1)=0

Therefore, by the previous fact, w(x,t) = 0

That is, u(x,t) - v(x,t) =0

Sou(x,t)=v(x,1),sou=v

Interesting Sidenote:

For the infinite rod where -infinity < x < infinity

(which we've considered last time), we DON'T have
uniqueness, and in fact there are MANY solutions of u: = K uxx
with u(x,0) = d(x).

So u(x,t) = S(x,1) = F(x) is a solution, but there are many other
ones!

BUT it turns out that there is only one solution among the
ones with the property that u(x,t) < C exp(ax?) for some C > 0
anda>0
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All the other solutions grow FASTER than C exp(ax?), which
isn't very realistic physically!

ITI- STABILITY
Recall the big 3 questions of PDE
1) Existence (which we've shown for the infinite rod in 2.4,
and will show for the rod of length | in Chapters 4 & 5)
2) Uniqueness (already shown)

3) Stability: If the initial conditions are close, then our
solutions are close.

Suppose u and v solve the same PDE

Ut = K uxx + f(x,1)
u(0,t) = g(1), u(l,t) = h(t)



But u(x,0) = ¢1(x) and v(x,0) = ¢2(x)

Where ¢1 and ¢z are "close".
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Then are u(x,t) and v(x,t) close as well?
YES!

Why? Letw=u-v

Then w satisfies

Wi = k Wxx
w(O,t)=0,w(l,t)=0
w(x,0) = $1(x) - p2(x)



Note: In the energy method, we didn't use the initial
condition until the very end.
In particular, (*) is still true! (with w instead of u):
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Only depends on ¢1 - ¢2

In particular, if ¢1 and 2 are close, then ¢1 - ¢2 is small,
therefore, by the above, u - v is small, so u and v are close!
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So indeed we have stability, but in an integral sensel

Next time: Maximum principle methods!



