
Today: All about the maximum principle 

(which is VERY different from the energy method)

I- MAXIMUM PRINCIPLE

Consider again a rod of length l, insulated at the endpoints

Picture: t fixed

Setting: Suppose u satisfies:

Terminal time

ut = k uxx (0 < x < l, 0 < t < T )

u(0,t) = g(t), u(l,t) = h(t)                 (Endpoints)

u(x,0) = �(x)                                     (Initially)

Question: Where does u(x,t) attain its largest value? 

(= When/where is the rod the hottest?)
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Fact: [Maximum principle] (MP)

The maximum of u(x,t) is attained either initially (t = 0) or at the 

endpoints (x = 0 or x = l)

That is: max u(x,t) is the larger one of: 

max g(t), max h(t), and max �(x)

Picture:

g(t) h(t)

�(x)

Interpretation: A metal rod is hottest either initially, or at the 

endpoints (which is why you should NEVER touch a plate with your bare 

hands right when you take it out of the oven, or at the border!)

Example: 

The max of u on the WHOLE rectangle is located somewhere 

on the bottom or lateral sides, no need to look elsewhere!



ut = k uxx (0 < x < 2, 0 < t < 2π)

u(0,t) = sin(t), u(l,t) = 2 + cos(t)

u(x,0) = 4 - x2

The maximum of u(0,t) = g(t) = = sin(t) is 1          (ENDPOINT)

The maximum of u(l,t) = h(t) = 2 + cos(t) is 3      (ENDPOINT)

The maximum of u(x,0) = �(x) = 4-x2 is 4            (INITIALLY)

=> By MP, the maximum of u is the larger one of 1, 3, 4, that is 4 

Remarks:

The same is true for min if you replace u with -u (-u also solves the 

heat equation), that is:

1)

min u = the smaller one of min g(t), min h(t), min �(x)

Sidenote: In theory, the max could also be attained somewhere 

inside the rectangle, but we have the following result:

2)

FACT: [STRONG Maximum Principle]

u attains its maximum ONLY at the bottom or the lateral sides.

In other words, if u attains its maximum inside or at the top of the 

rectangle, then u is constant!

II- UNIQUENESS



What's pretty amazing about this section is that we can prove the 

SAME results as last time (uniqueness, stability, etc.), but this time 

using the maximum principle.

Try to review this lecture and last lecture to really appreciate the 

similarities and differences!

Suppose u solves:

ut = k uxx

u(0,t) = 0, u(l,t) = 0

u(x,0) = 0

Claim: u(x,t) = 0

Why?

By MP, the max of u is the larger one of:1)

max u(0,t) = max 0 = 0         (Endpoint)

max u(l,t) = max 0 = 0          (Endpoint)

max u(x,0) = max 0 = 0        (Initial)

So max u is 0, therefore u(x,t) ≤ 0

On the other hand, by the MP again, the min value of u is the 

smaller one of: 

2)

min u(0,t) = min 0 = 0



min u(l,t) = min 0 = 0

min u(x,0) = min 0 = 0

Hence the min of u is 0, so u(x,t) ≥ 0

Combining both, we get u(x,t) = 03)

Consequence: Uniqueness of the heat equation (just like last time by 

considering w = u - v)

III- STABILITY

This time we still get stability, but not in an integral sense, but in a 

"maximal" sense.

Setting: Suppose u and v solve 

ut - k uxx = f(x,t)

u(0,t) = g(t), u(l,t) = h(t)

But u(x,0) = �1 (x) and v(x,0) = �2(x), where �1 and �2 are "close"

Then w = u - v solves:

wt - k wxx = 0

w(0,t) = 0, w(l,t) = 0

w(x,0) = �1 (x) - �2(x)



Consider: 

M = max |�1(x) - �2(x)|   (≥ 0)

(like a "worst-case" distance/error between �1(x) & �2(x))

Picture:

By MP, max w is the larger of:1)

max w(0,t) = max 0 = 0 ≤ M
max w(l,t) = max 0 = 0 ≤ M

max w(x,0) = max �1(x) - �2(x) ≤ max |�1(x) - �2(x)| = M

w(x,0)

Hence max w(x,t) (whatever it is) is for sure ≤ M

So w(x,t) ≤ max w(x,t) ≤ M => w ≤ M

(Here we used that for every z, we have z ≤ |z|) 



On the other hand, by the minimum principle, min of w is the 
smaller one of

2)

min w(0,t) = 0 ≥ -M

min w(l,t) = 0 ≥ -M
min w(x,0) = min �1(x) - �2(x) ≥ min -|�1(x) - �2(x)| = - max |�1(x) -
�2(x)| = -M            

w(x,0)

(Here we used z ≥ -|z| for every z, as well as min -z = - max z)

Hence min w(x,t) ≥ -M

So w(x,t) ≥  min w(x,t) ≥  -M => w ≥ -M

Hence -M  ≤ w  ≤ M, so |w|  ≤ M, which means |u-v|  ≤ M, and in 
particular max |u-v| ≤ M

3)

Conclusion: For all x and t4)

max |u(x,t) - v(x,t)| ≤ max |�1(x) - �2(x)| (= M)

Small

Interpretation: If �1 and �2 are so close to make the worst-case error 
max |�1(x) - �2(x)| small, then the worst-case error max |u - v| is 
small, which means u and v are close enough as well. So here we get 
stability, but with a max sense 

Note: Generally, use energy methods for integral results, maximum 
principle methods for max results.



IV- OPTIONAL: PROOF OF THE MAXIMUM PRINCIPLE 

Recall: (Math 2D) If f(x,y) has a maximum at (x,y), then fx = 0, fy = 0, 
and fxx ≤ 0 and fyy ≤ 0 at that point

Main idea: Suppose u has a maximum at (x,t), where (x,t) is inside the 
rectangle

Picture:

Then ut = 0 and uxx ≤ 0 at (x,t)
Suppose for a second that we can show uxx < 0, then we get a 
contradiction, because at (x,t)

ut - k uxx = 0 -k (uxx) > 0 (by the above)

But also ut - k uxx = 0 (by the PDE!), so get 0 > 0



This is a contradiction unless that maximum is attained at x = 0 or x = l 
or t = 0 (which is what we want), or at t = T, the latter we have to 
exclude.

This *almost* works, except need to modify u a little bit!

Actual Proof:

STEP 1: Let � > 0 be a small constant and consider:

v(x,t) = u(x,t) + � x2

STEP 2: Suppose v attains its maximum at (x,t), where (x,t) is inside
the rectangle:

Then at (x,t), we have:

vt = 0 and vxx ≤ 0, so vt - k vxx = 0 - k vxx ≥ 0  (�)

But vt = ut + 0 and vxx = uxx + 2 �

So vt - k vxx = ut - k uxx - 2k � = - 2k � < 0 , so we get a contradiction 
with ���

So v must attain its maximum either initially (t = 0), at the endpoints 
(x = 0 or x = l) or terminally (t = T)



STEP 3: Exclude t = T

Picture:   

In that case, if v attains its maximum at (x,T), then we still have vxx ≤ 
0, but this time we only have vt ≥ 0, since v might increase until t = T

Picture:

(x fixed)

But still, in this case we still get the same contradiction, since we still 
have vt - vxx ≥ 0 

STEP 4: Hence the maximum of v is the larger one of:



max v(x,0) = max �(x) + � x2 ≤ max �(x) + max � x2 = (max �(x)) + � l2

max v(0,t) = max g(t) + 0 = max g(t)

max v(l,t) = max h(t) + � l2 = (max h(t)) + � l2

Therefore, we get that for all (x,t)

v(x,t)  ≤ the larger one of: (max �(x)) + � l2, max g(t), (max h(t)) + � l2

(Notice that the right-hand-side is independent of x and t)

STEP 5: Finally, letting � -> 0 in both sides of the above inequality and 

using v = u + � x2 -> u (as � -> 0), we get:

u(x,t) ≤ the larger one of max �(x), max g(t), max h(t)

Note: The right-hand-side of the inequality basically represents the 

max on the bottom and lateral sides of the rectangle.

Since this holds for every (x,t), we get

max u ≤ the larger one of max �(x), max g(t), max h(t)

And therefore the max has to be attained at the bottom or the lateral 

sides of the rectangle, else we would get max u > the larger one of max 

�(x), max g(t), max h(t), which is a contradiction.


