LECTURE 12: HEAT EQUATION PROPERTIES (II)

Monday, October 21, 2019 5:22 PM

Today: All about the maximum principle (which is **VERY** different from the energy method)

I- MAXIMUM PRINCIPLE

Consider again a rod of length I, insulated at the endpoints

Picture: t fixed

Setting: Suppose u satisfies:

1

$$f = k u_{xx} (0 < x < 1, 0 < t < T) (Endpoints) (x, 0) = \phi(x) (Initially)$$

Question: Where does u(x,t) attain its largest value?

(= When/where is the rod the hottest?)

Fact: [Maximum principle] (MP)

The maximum of u(x,t) is attained either **initially** (t = 0) or at the **endpoints** (x = 0 or x = 1)

That is: max u(x,t) is the **larger** one of:

max
$$g(t)$$
, max $h(t)$, and max $\phi(x)$

The max of u on the **WHOLE** rectangle is located somewhere on the bottom or lateral sides, no need to look elsewhere!

Interpretation: A metal rod is hottest either initially, or at the endpoints (which is why you should NEVER touch a plate with your bare hands right when you take it out of the oven, or at the border!)

Example:

 $\begin{cases} u_{t} = k u_{xx} (0 < x < 2, 0 < t < 2\pi) \\ u(0,t) = sin(t), u(l,t) = 2 + cos(t) \\ u(x,0) = 4 - x^{2} \end{cases}$

The maximum of u(0,t) = g(t) = sin(t) is 1 (ENDPOINT) The maximum of u(1,t) = h(t) = 2 + cos(t) is 3 (ENDPOINT) The maximum of $u(x,0) = \phi(x) = 4-x^2$ is 4 (INITIALLY)

=> By MP, the maximum of u is the larger one of 1, 3, 4, that is 4

Remarks:

1) The same is true for min if you replace u with -u (-u also solves the heat equation), that is:

min u = the smaller one of min g(t), min h(t), min $\phi(x)$

2) Sidenote: In theory, the max could *also* be attained somewhere inside the rectangle, but we have the following result:

FACT: [STRONG Maximum Principle]

u attains its maximum ONLY at the bottom or the lateral sides.

In other words, if u attains its maximum inside or at the top of the rectangle, then u is constant!

II- UNIQUENESS

What's pretty amazing about this section is that we can prove the **SAME** results as last time (uniqueness, stability, etc.), but this time using the maximum principle.

Try to review this lecture and last lecture to really appreciate the similarities and differences!

Suppose u solves:

 $u_t = k u_{xx}$ u(0,t) = 0, u(l,t) = 0 u(x,0) = 0

Claim: u(x,t) = 0

Why?

1) By MP, the max of u is the larger one of:

(Endpoint)
(Endpoint)
(Initial)

So max u is 0, therefore $u(x,t) \leq 0$

2) On the other hand, by the MP again, the min value of u is the smaller one of:

 $\min u(0,t) = \min 0 = 0$

 $\min u(1,t) = \min 0 = 0$ $\min u(x,0) = \min 0 = 0$

Hence the min of u is 0, so $u(x,t) \ge 0$

3) Combining both, we get u(x,t) = 0

Consequence: Uniqueness of the heat equation (just like last time by considering w = u - v)

III- STABILITY

This time we still get stability, but not in an integral sense, but in a "maximal" sense.

Setting: Suppose u and v solve

u_t - k u_{xx} = f(x,t) u(0,t) = g(t), u(l,t) = h(t)

But $u(x,0) = \phi_1(x)$ and $v(x,0) = \phi_2(x)$, where ϕ_1 and ϕ_2 are "close"

Then w = u - v solves:

$$w_{t} - k w_{xx} = 0$$

 $w(0,t) = 0, w(l,t) = 0$
 $w(x,0) = \phi_{1}(x) - \phi_{2}(x)$

2) On the other hand, by the minimum principle, min of w is the smaller one of

 $\min w(0,t) = 0 \ge -M \\ \min w(1,t) = 0 \ge -M \\ \min w(x,0) = \min \phi_1(x) - \phi_2(x) \ge \min -|\phi_1(x) - \phi_2(x)| = -\max |\phi_1(x) - \phi_2($

(Here we used $z \ge -|z|$ for every z, as well as min $-z = - \max z$)

Hence min $w(x,t) \ge -M$

So $w(x,t) \ge \min w(x,t) \ge -M \Rightarrow w \ge -M$

3) Hence -M ≤ w ≤ M, so |w| ≤ M, which means |u-v| ≤ M, and in particular max |u-v| ≤ M

4) Conclusion: For all x and t

$$\max |u(x,t) - v(x,t)| \le \max |\phi_1(x) - \phi_2(x)| (= M)$$

Small

Interpretation: If ϕ_1 and ϕ_2 are so close to make the worst-case error max $|\phi_1(x) - \phi_2(x)|$ small, then the worst-case error max |u - v| is small, which means u and v are close enough as well. So here we get stability, but with a max sense

Note: Generally, use energy methods for integral results, maximum principle methods for max results.

IV- OPTIONAL: PROOF OF THE MAXIMUM PRINCIPLE

Recall: (Math 2D) If f(x,y) has a maximum at (x,y), then $f_x = 0$, $f_y = 0$, and $f_{xx} \le 0$ and $f_{yy} \le 0$ at that point

Main idea: Suppose u has a maximum at (x,t), where (x,t) is inside the rectangle

This is a contradiction *unless* that maximum is attained at x = 0 or x = 1 or t = 0 (which is what we want), or at t = T, the latter we have to exclude.

This ***almost*** works, except need to modify u a little bit!

Actual Proof:

STEP 1: Let ε > 0 be a small constant and consider:

$$v(x,t) = u(x,t) + \varepsilon x^2$$

STEP 2: Suppose v attains its maximum at (x,t), where (x,t) is *inside* the rectangle:

Then at (x,t), we have:

 $v_t = 0$ and $v_{xx} \le 0$, so $v_t - k v_{xx} = 0 - k v_{xx} \ge 0$ (*)

But $v_t = u_t + 0$ and $v_{xx} = u_{xx} + 2 \varepsilon$

So v_t - k v_{xx} = u_t - k u_{xx} - 2k ϵ = - 2k ϵ < 0 , so we get a contradiction with (*)

So v must attain its maximum either initially (t = 0), at the endpoints (x = 0 or x = 1) or terminally (t = T)

max v(x,0) = max $\phi(x) + \varepsilon x^2 \le \max \phi(x) + \max \varepsilon x^2 = (\max \phi(x)) + \varepsilon |^2$ max v(0,t) = max g(t) + 0 = max g(t) max v(l,t) = max h(t) + $\varepsilon |^2$ = (max h(t)) + $\varepsilon |^2$

Therefore, we get that for all (x,t)

v(x,t) \leq the larger one of: (max $\phi(x)$) + εl^2 , max g(t), (max h(t)) + εl^2

(Notice that the right-hand-side is independent of x and t)

STEP 5: Finally, letting $\varepsilon \rightarrow 0$ in both sides of the above inequality and using v = u + $\varepsilon x^2 \rightarrow u$ (as $\varepsilon \rightarrow 0$), we get:

 $u(x,t) \leq the larger one of max \phi(x), max g(t), max h(t)$

Note: The right-hand-side of the inequality basically represents the max on the bottom and lateral sides of the rectangle.

Since this holds for every (x,t), we get

max $u \leq the larger one of max \phi(x), max g(t), max h(t)$

And therefore the max has to be attained at the bottom or the lateral sides of the rectangle, else we would get max u > the larger one of max $\phi(x)$, max g(t), max h(t), which is a contradiction.