LECTURE 12: HEAT EQUATION PROPERTIES (II)

Today: All about the maximum principle (which is VERY different from the energy method)

I- MAXIMUM PRINCIPLE

Consider again a rod of length I, insulated at the endpoints
Picture: † fixed

Setting: Suppose u satisfies:
$\begin{cases}u_{t}=k u_{x x} \quad\left(0<x<1,0<t<\frac{T}{T}\right) & \\ u(0, t)=g(t), u(1, t)=h(t) & \text { (Endpoints) } \\ u(x, 0)=\phi(x) & \text { (Initially) }\end{cases}$

Question: Where does $u(x, t)$ attain its largest value?
(= When/where is the rod the hottest?)

Fact: [Maximum principle] (MP)

The maximum of $u(x, t)$ is attained either initially $(t=0)$ or at the endpoints ($x=0$ or $x=1$)

That is: max $u(x, t)$ is the larger one of:

$$
\max g(t), \max h(t) \text {, and } \max \phi(x)
$$

Picture:

The max of u on the WHOLE rectangle is located somewhere on the bottom or lateral sides, no need to look elsewhere!

Interpretation: A metal rod is hottest either initially, or at the endpoints (which is why you should NEVER touch a plate with your bare hands right when you take it out of the oven, or at the border!)

Example:

$\left\{\begin{array}{l}u_{t}=k u_{x x}(0<x<2,0<t<2 \pi) \\ u(0, t)=\sin (t), u(l, t)=2+\cos (t) \\ u(x, 0)=4-x^{2}\end{array}\right.$

The maximum of $u(0, t)=g(t)==\sin (t)$ is 1
The maximum of $u(1, t)=h(t)=2+\cos (t)$ is 3
The maximum of $u(x, 0)=\phi(x)=4-x^{2}$ is 4
(ENDPOINT)
(ENDPOINT)
(INITIALLY)
\Rightarrow By MP, the maximum of u is the larger one of $1,3,4$, that is 4

Remarks:

1) The same is true for min if you replace u with $-u(-u$ also solves the heat equation), that is:
$\min u=$ the smaller one of $\min g(t), \min h(t), \min \phi(x)$
2) Sidenote: In theory, the max could also be attained somewhere inside the rectangle, but we have the following result:

FACT: [STRONG Maximum Principle]
u attains its maximum ONLY at the bottom or the lateral sides.

In other words, if u attains its maximum inside or at the top of the rectangle, then u is constant!

II- UNIQUENESS

What's pretty amazing about this section is that we can prove the SAME results as last time (uniqueness, stability, etc.), but this time using the maximum principle.

Try to review this lecture and last lecture to really appreciate the similarities and differences!

Suppose u solves:
$\left\{\begin{array}{l}u_{+}=k u_{x x} \\ u(0, t)=0, u(1, t)=0 \\ u(x, 0)=0\end{array}\right.$

Claim: $u(x, t)=0$
Why?

1) By MP, the max of u is the larger one of:

$$
\begin{array}{ll}
\max u(0, t)=\max 0=0 & \text { (Endpoint) } \\
\max u(1, t)=\max 0=0 & \text { (Endpoint) } \\
\max u(x, 0)=\max 0=0 & \text { (Initial) }
\end{array}
$$

So max u is 0 , therefore $u(x, t) \leq 0$
2) On the other hand, by the MP again, the min value of u is the smaller one of:
$\min u(0, t)=\min 0=0$
$\min u(1, t)=\min 0=0$
$\min u(x, 0)=\min 0=0$
Hence the min of u is 0 , so $u(x, t) \geq 0$
3) Combining both, we get $u(x, t)=0$

Consequence: Uniqueness of the heat equation (just like last time by considering $w=u-v$)

III- STABILITY

This time we still get stability, but not in an integral sense, but in a "maximal" sense.

Setting: Suppose u and v solve
$\left\{\begin{array}{l}u_{t}-k u_{x x}=f(x, t) \\ u(0, t)=g(t), u(1, t)=h(t)\end{array}\right.$
But $u(x, 0)=\phi_{1}(x)$ and $v(x, 0)=\phi_{2}(x)$, where ϕ_{1} and ϕ_{2} are "close"
Then $w=u-v$ solves:
$\left\{\begin{array}{l}w_{t}-k w_{x x}=0 \\ w(0, t)=0, w(1, t)=0 \\ w(x, 0)=\phi_{1}(x)-\phi_{2}(x)\end{array}\right.$

Consider:

$$
M=\max \left|\phi_{1}(x)-\phi_{2}(x)\right| \quad(\geq 0)
$$

(like a "worst-case" distance/error between $\phi_{1}(x) \& \phi_{2}(x)$)

Picture:

1) By MP, max w is the larger of:

$$
\begin{aligned}
& \max w(0, t)=\max 0=0 \leq M \\
& \max w(1, t)=\max 0=0 \leq M \\
& \max w(x, 0)=\max _{\phi_{1}(x)-\phi_{2}(x)}^{\underbrace{\max \left|\phi_{1}(x)-\phi_{2}(x)\right|=M}_{w(x, 0)}} .=M \text {. }
\end{aligned}
$$

(Here we used that for every z, we have $z \leq|z|$)
Hence max $w(x, t)$ (whatever it is) is for sure $\leq M$

So $w(x, t) \leq \max w(x, t) \leq M \Rightarrow w \leq M$
2) On the other hand, by the minimum principle, \min of w is the smaller one of
$\min w(0, t)=0 \geq-M$
$\min w(1, t)=0 \geq-M$
$\min w(x, 0)=\min \phi_{1}(x)-\phi_{2}(x) \geq \min -\left|\phi_{1}(x)-\phi_{2}(x)\right|=-\max \mid \phi_{1}(x)-$
$\phi_{2}(x) \mid=-M$

$$
w(x, 0)
$$

(Here we used $z \geq-|z|$ for every z, as well as $\min -z=-\max z$)

Hence $\min w(x, t) \geq-M$

So $w(x, t) \geq \min w(x, t) \geq-M=>w \geq-M$
3) Hence $-M \leq w \leq M$, so $|w| \leq M$, which means $|u-v| \leq M$, and in particular $\max |u-v| \leq M$
4) Conclusion: For all x and t

$$
\max |u(x, t)-v(x, t)| \leq \underbrace{\max \mid \phi_{1}(x)-\phi_{2}(x)}_{\text {Small }} \mid(=M)
$$

Interpretation: If ϕ_{1} and ϕ_{2} are so close to make the worst-case error $\max \left|\phi_{1}(x)-\phi_{2}(x)\right|$ small, then the worst-case error max $|u-v|$ is small, which means u and v are close enough as well. So here we get stability, but with a max sense

Note: Generally, use energy methods for integral results, maximum principle methods for max results.

IV- OPTIONAL: PROOF OF THE MAXIMUM PRINCIPLE

Recall: (Math 2D) If $f(x, y)$ has a maximum at (x, y), then $f_{x}=0, f_{y}=0$, and $f_{x x} \leq 0$ and $f_{y y} \leq 0$ at that point

Main idea: Suppose u has a maximum at (x, t), where (x, t) is inside the rectangle

Picture:

Then $u_{t}=0$ and $u_{x x} \leq 0$ at (x, t)
Suppose for a second that we can show $u_{x x}<0$, then we get a contradiction, because at (x, t)
$u_{t}-k u_{x x}=0-k\left(u_{x x}\right)>0$ (by the above)
But also $u_{t}-k u_{x x}=0$ (by the PDE!), so get $0>0$

This is a contradiction unless that maximum is attained at $x=0$ or $x=1$ or $t=0$ (which is what we want), or at $t=T$, the latter we have to exclude.

This *almost* works, except need to modify u a little bit!

Actual Proof:

STEP 1: Let $\varepsilon>0$ be a small constant and consider:

$$
v(x, t)=u(x, t)+\varepsilon x^{2}
$$

STEP 2: Suppose v attains its maximum at (x, t), where (x, t) is inside the rectangle:

Then at (x, t), we have:
$v_{+}=0$ and $v_{x x} \leq 0$, so $v_{+}-k v_{x x}=0-k v_{x x} \geq 0 \quad(*)$
But $v_{t}=u_{t}+0$ and $v_{x x}=u_{x x}+2 \varepsilon$

So $v_{t}-k v_{x x}=u_{+}-k u_{x x}-2 k \varepsilon=-2 k \varepsilon<0$, so we get a contradiction with (*)

So v must attain its maximum either initially ($\dagger=0$), at the endpoints ($x=0$ or $x=1$) or terminally ($t=\mathrm{T}$)

STEP 3: Exclude $\dagger=T$

Picture:

In that case, if v attains its maximum at (x, T), then we still have $v_{x x} \leq$ 0 , but this time we only have $v_{t} \geq 0$, since v might increase until $\dagger=T$

Picture:

But still, in this case we still get the same contradiction, since we still have $v_{+}-v_{x x} \geq 0$

STEP 4: Hence the maximum of v is the larger one of:
$\max v(x, 0)=\max \phi(x)+\varepsilon x^{2} \leq \max \phi(x)+\max \varepsilon x^{2}=(\max \phi(x))+\left.\varepsilon\right|^{2}$ $\max v(0, t)=\max g(t)+0=\max g(t)$
$\max \mathrm{v}(\mathrm{I}, \mathrm{t})=\operatorname{maxh}(\mathrm{t})+\varepsilon \mathrm{I}^{2}=(\max h(t))+\varepsilon \mathrm{I}^{2}$

Therefore, we get that for all (x, t)
$v(x, t) \leq$ the larger one of: $(\max \phi(x))+\left.\varepsilon\right|^{2}, \max g(t),(\max h(t))+\left.\varepsilon\right|^{2}$
(Notice that the right-hand-side is independent of x and \dagger)

STEP 5: Finally, letting $\varepsilon \rightarrow 0$ in both sides of the above inequality and using $v=u+\varepsilon x^{2} \rightarrow u($ as $\varepsilon \rightarrow 0)$, we get:

$$
u(x, t) \leq \text { the larger one of } \max \phi(x), \max g(t), \max h(t)
$$

Note: The right-hand-side of the inequality basically represents the max on the bottom and lateral sides of the rectangle.

Since this holds for every (x, t), we get
$\max u \leq$ the larger one of $\max \phi(x), \max g(t), \max h(t)$

And therefore the max has to be attained at the bottom or the lateral sides of the rectangle, else we would get max $u>$ the larger one of max $\phi(x), \max g(t), \max h(t)$, which is a contradiction.

