LECTURE 14: MIDTERM REVIEW SESSION

Friday, October 25, 2019 6:20 PM

I- ENERGY METHOD

Example: Use energy methods to show that the only solution of the following PDE is u(x,t) = 0

$$u_{t} = k u_{xx}$$

 $u(0,t) = 0, u(1,t) = 0$
 $u(x,0) = 0$

Hint: Multiply by u

1)
$$u_t u = k u_{xx} u$$

$$u_t u dx = k \int u_{xx} u dx$$

2) Left-hand-side

$$\int_{0}^{2} u_{t} u dx = \int_{0}^{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} dx = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} dx$$

3) Right-hand-side: Integrate by parts with x

$$u_{xx} u dx = u_{x}(I,t) u(I,t) - u_{x}(0,t) u(0,t) - \int_{0}^{\infty} u_{x} u_{x} dx = - \int_{0}^{\infty} (ux)^{2} dx$$

4) Equating both sides, we get

$$\frac{\ell}{d/dt} \frac{1}{1/2} \int_{0}^{\ell} u^{2} dx \leq -k \int_{0}^{\ell} (u_{x})^{2} dx \leq 0$$

$$E'(t) \leq 0$$

5) Hence E(t) is decreasing, and in particular

E(t)
$$\leq$$
 E(0)
$$(0 \leq) \frac{1}{2} \int_{0}^{2} u^{2}(x,t) dx \leq \frac{1}{2} \int_{0}^{2} u^{2}(x,0) dx = 0$$
Hence $u^{2}(x,t) = 0$, so $u(x,t) = 0$

II- MAXIMUM PRINCIPLE

Example: Same problem, but with the maximum principle!

By max principle, max u is the larger one of

Hence max $u \le 0$, so $u(x,t) \le 0$

Similarly, by the minimum principle, min u is the smaller one of

min u(0,†) = min 0 = 0 min u(1,†) = min 0 = 0 min u(×,0) = min 0 = 0

Hence min $u \ge 0$, so $u(x,t) \ge 0$

Combining both, we get u(x,t) = 0

III- CHEN LU!

Example: Use the coordinate method to solve the PDE

$$a u_x + b u_y + cu = 0$$

Hint:

$$\begin{cases} \xi = ax + by \\ \eta = -bx + ay \end{cases}$$

$$u_{x} = \frac{\partial U}{\partial x} = \frac{\partial U}{\partial x} \frac{\partial J}{\partial x} + \frac{\partial U}{\partial m} \frac{\partial m}{\partial x}$$

$$= U_{3} (a) + U_{m} (-b)$$

$$= a U_{3} - b U_{m}$$

$$u_{y} = \frac{\partial U}{\partial \gamma} = \frac{\partial U}{\partial \gamma} \frac{\partial \gamma}{\partial \gamma} + \frac{\partial U}{\partial m} \frac{\partial m}{\partial \gamma}$$

$$= U_{3} (b) + U_{m} (a)$$

$$= b U_{3} + a U_{m}$$

So a $u_x + b u_y + cu = 0$

=)
$$a^2 U_3 - ab U_n + b^2 U_3 + ab U_n + cU = 0$$

$$\Rightarrow (a^2 + b^2) U_3 + cU = 0$$

$$\Rightarrow U_7 = -\frac{c}{a^2 + b^2}$$

(Note: y' = ky => y = Ce^{kt})

$$\Rightarrow U = f(n) e^{-\frac{c}{a^2+b^2}}$$

$$-\frac{c}{a^2+b^2}(ax+by)$$

$$\Rightarrow U(x,y) = f(ay-bx)e^{-\frac{c}{a^2+b^2}}$$

IV- TRANSFORMS

Example: Now solve a $u_x + b u_y + cu = 0$

By using $v(x,y) = u(x,y) e^{(c/a)x}$

=> u =
$$e^{-(c/a)x} v$$

$$Ux = \left(e^{-\frac{cx}{a}}V\right)_{x} = -\frac{cx}{a}e^{-\frac{cx}{a}}V + e^{-\frac{cx}{a}}Vx$$

$$U_{\gamma} = \left(e^{-\frac{cx}{a}}V\right)_{\gamma} = e^{-\frac{cx}{a}}V_{\gamma}$$

$$a u_x + b u_y + cu = 0$$

$$\Rightarrow a \left[-\frac{c}{a} e^{-\frac{cx}{a}} V + e^{-\frac{cx}{a}} V_{x} \right]$$

$$+be^{-\frac{cx}{a}}V_{7}+ce^{-\frac{cx}{a}}V=0$$

$$\Rightarrow -ce^{-cx} V + ae^{-cx} V_x + be^{-cx} V_y$$

$$+ ce^{-cx} V = 0$$

$$\Rightarrow e^{-cx} \left[aV_x + bV_y \right] = 0$$

$$\Rightarrow$$
 a $V_x + b V_y = 0$

$$= > V = f(ay - bx)$$

$$\Rightarrow Ue^{\frac{cx}{a}} = f(ay - bx)$$

=)
$$u(x,y) = f(ay - bx) e^{-(c/a)x}$$

(Might look different from before, but basically the same if you write x in terms of the variables ax + by and ay - bx and use f arbitrary)

V- D'ALEMBERT

Example:

The general solution of $u_{xx} + 2 u_{xt} - u_{tt} = 0$ is

$$u(x,t) = F(2x-t) + G(x+t)$$
 (see Practice exam)

Find the solution that satisfies $u(x,0) = x^2$ and $u_t(x,0) = \sin(x)$

1)
$$u(x,0) = F(2x-0) + G(x+0) = F(2x) + G(x) = x^2$$

$$u_t(x,t) = -F'(2x-t) + G'(x+t)$$

 $u_t(x,0) = -F'(2x) + G'(x) = sin(x)$

=> - F'(2x) +
$$G'(x) = \sin(x)$$

=> $(-1/2 F(2x))' + G(x) = \sin(x)$
=> $-1/2 F(2x) + G(x) = -\cos(x) + C$

$$\begin{cases} F(2x) + G(x) = x^2 \\ -1/2 F(2x) + G(x) = -\cos(x) + C \end{cases}$$

2) Subtract both equations

$$3/2 F(2x) = x^2 + \cos(x) - C$$

$$F(2x) = 2/3 x^2 + 2/3 \cos(x) - 2/3 C$$

$$F(x) = 2/3 (x/2)^2 + 2/3 \cos(x/2) - 2/3 C$$
$$= 1/6 x^2 + 2/3 \cos(x/2) - 2/3 C$$

3) Add 2 times Equation 2 to Equation 1

$$3 G(x) = x^2 - 2\cos(x) + 2C$$

$$G(x) = 1/3 x^2 - 2/3 \cos(x) + 2/3 C$$

4) Answer:

$$u(x,t) = F(2x-t) + G(x+t)$$

$$= 1/6 (2x-t)^2 + 2/3 \cos((2x-t)/2) - 2/3 C$$

$$+ 1/3 (x+t)^2 - 2/3 \cos(x+t) + 2/3 C$$

$$+ 1/3 (x+t)^2 - 2/3 \cos(x+t) + 2/3 C$$

$$u(x,t) = 1/6 (2x-t)^2 + 2/3 \cos((2x-t)/2) - 2/3 \cos(x+t)$$

(No need to simplify)

VI- FIRST-ORDER PDE

Example: Solve $(1+x^2) u_x + e^y u_y = 0$

$$\frac{dy}{dx} = \frac{e^{y}}{1+x^{2}}$$
 (= Slope)

$$\Leftrightarrow$$
 (1+x2) dy = $e^{\gamma} dx$

$$(=) \qquad \frac{d7}{e7} = \int \frac{dx}{1+x^2}$$

$$\implies \int e^{-7} d\gamma = \int \frac{1}{1+x^2} dx$$

$$\leftarrow$$
 $-e^{-7} = TAN^{-1}(x) + C$

$$C = -e^{-\gamma} - TAN^{-1}(x)$$

Solution:

$$u(x,y) = f(?) = f(-e^{-y} - tan^{-1}(x)) = f(e^{-y} + tan^{-1}(x))$$