LECTURE 14: MIDTERM REVIEW SESSION

I- ENERGY METHOD

Example: Use energy methods to show that the only solution of the following PDE is $u(x, t)=0$
$u_{t}=k u_{x x}$
$u(0, t)=0, u(1, t)=0$
$u(x, 0)=0$

Hint: Multiply by u

1) $u_{t} u=k u_{x x} u$

$$
\int_{0}^{l} u+u d x=k \int_{0}^{l} u_{x x} u d x
$$

2) Left-hand-side

$$
\int_{0}^{\ell} u_{t} u d x=\int_{0}^{l} 1 / 2 d / d t\left(u^{2}\right) d x=d / d t+1 / 2 \int_{0}^{\ell} u^{2} d x
$$

3) Right-hand-side: Integrate by parts with x
$u_{x x} u d x=u_{x}(1, t) u(1, T)^{0}-u_{x}(0, t) u(0, t)-\int_{0}^{l} u_{x} u_{x} d x=-\int_{0}^{l}(u x)^{2} d x$
4) Equating both sides, we get
$d / d t 1 / 2 \int_{0}^{l} u^{2} d x \leq-k \int_{0}^{l}\left(u_{x}\right)^{2} d x \leq 0$
$E^{\prime}(\dagger) \leq 0$
5) Hence $E(t)$ is decreasing, and in particular
$E(t) \leq E(0)$
$(0 \leq) 1 / 2 \int_{0}^{l} u^{2}(x, t) d x \leq 1 / 2 \int_{0}^{l} \underbrace{u^{2}(x, 0)}_{0} d x=0$
Hence $u^{2}(x, t)=0$, so $u(x, t)=0$

II- MAXIMUM PRINCIPLE

Example: Same problem, but with the maximum principle!
By max principle, max u is the larger one of
$\max u(0, t)=\max 0=0$
$\max u(1, t)=\max 0=0$
$\max u(x, 0)=\max 0=0$

Hence $\max u \leq 0$, so $u(x, t) \leq 0$

Similarly, by the minimum principle, $\min u$ is the smaller one of

$$
\begin{aligned}
& \min u(0, t)=\min 0=0 \\
& \min u(1, t)=\min 0=0 \\
& \min u(x, 0)=\min 0=0
\end{aligned}
$$

Hence $\min u \geq 0$, so $u(x, t) \geq 0$
Combining both, we get $u(x, t)=0$

III- CHEN LU!

Example: Use the coordinate method to solve the PDE

$$
a u_{x}+b u_{y}+c u=0
$$

Hint:

$$
\begin{aligned}
&\left\{\begin{array}{l}
\xi=a x+b y \\
\eta=-b x+a y
\end{array}\right. \\
& u_{x}=\frac{\partial U}{\partial x}=\frac{\partial U}{\partial 3} \frac{\partial 3}{\partial x}+\frac{\partial U}{\partial m} \frac{\partial m}{\partial x} \\
&=U_{3}(a)+U_{n}(-b) \\
&=a U_{3}-b U_{n}
\end{aligned}
$$

$$
\begin{aligned}
u_{y}=\frac{\partial U}{\partial y} & =\frac{\partial U}{\partial 3} \frac{\partial z}{\partial y}+\frac{\partial U}{\partial m} \frac{\partial m}{\partial y} \\
& =U_{3}(b)+U_{m}(a) \\
& =b U_{3}+a U_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } a u_{x}+b u_{y}+c u=0 \\
& \Rightarrow a\left(a U_{3}-b U_{m}\right)+b\left(b U_{3}+a U_{n}\right)+c U=0 \\
& \Rightarrow a^{2} U_{3}-a b U_{n}+b^{2} U_{3}+a b U_{n}+c U=0 \\
& \Rightarrow\left(a^{2}+b^{2}\right) U_{3}+c U=0 \\
& \Rightarrow \quad U_{3}=-\frac{c}{a^{2}+b^{2}} U
\end{aligned}
$$

(Note: $\left.y^{\prime}=k y=>y=C e^{k t}\right)$

$$
\begin{aligned}
& \left.\Rightarrow \quad U=f(n) e^{-\frac{c}{a^{2}+b^{2}}}\right\} \\
& \Rightarrow \quad U(x, y)=f(a y-b x) e^{-\frac{c}{a^{2}+b^{2}}}(a x+b y)
\end{aligned}
$$

IV- TRANSFORMS
Example: Now solve $a u_{x}+b u_{y}+c u=0$
By using $v(x, y)=u(x, y) e^{(c / a) x}$

$$
\begin{aligned}
& \Rightarrow u=e^{-(c / a) x} v \\
& U_{x}=\left(e^{-\frac{c x}{a}} V\right)_{x}=-\frac{c}{a} e^{-\frac{c x}{a}} V+e^{-\frac{c x}{a}} V_{x} \\
& U_{y}=\left(e^{-\frac{c x}{a}} V\right)_{y}=e^{-\frac{c x}{a}} V_{y} \\
& a u_{x}+b u_{y}+c u=0 \\
& \Rightarrow a\left[-\frac{c}{a} e^{-\frac{c x}{a}} V+e^{-\frac{c x}{a}} V_{x}\right] \\
& +b e^{-\frac{c x}{a}} v_{y}+c \underbrace{e^{-\frac{c x}{a}}}_{u} V=0 \\
& \Rightarrow-c e^{-c x} \mathrm{a}+a e^{-\frac{c x}{a}} V_{x}+b e^{-\frac{c x}{a}} V_{y} \\
& +c e^{-c \mid x} a=0 \\
& \text {-ix- }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad e^{-c x}\left[a V_{x}+b V_{y}\right]=0 \\
& \Rightarrow \quad a V_{x}+b V_{y}=0 \\
& \Rightarrow \quad V=f(a y-b x) \\
& \Rightarrow \quad U e^{\frac{c x}{a}}=f(a y-b x) \\
& \Rightarrow \quad u(x, y)=f(a y-b x) e^{-(c / a) x}
\end{aligned}
$$

(Might look different from before, but basically the same if you write x in terms of the variables $a x+$ by and $a y-b x$ and use f arbitrary)

V-D'ALEMBERT
Example:
The general solution of $u_{x x}+2 u_{x t}-u_{t+1}=0$ is $u(x, t)=F(2 x-t)+G(x+t)$ (see Practice exam)

Find the solution that satisfies $u(x, 0)=x^{2}$ and $u_{+}(x, 0)=\sin (x)$

1) $u(x, 0)=F(2 x-0)+G(x+0)=F(2 x)+G(x)=x^{2}$

$$
\begin{aligned}
& u_{+}(x, t)=-F^{\prime}(2 x-t)+G^{\prime}(x+t) \\
& u_{+}(x, 0)=-F^{\prime}(2 x)+G^{\prime}(x)=\sin (x) \\
& \Rightarrow-F^{\prime}(2 x)+G^{\prime}(x)=\sin (x) \\
& \Rightarrow(-1 / 2 F(2 x))^{\prime}+G(x)=\sin (x) \quad F^{\prime}(2 x) \neq(F(2 x))^{\prime} \\
& \Rightarrow-1 / 2 F(2 x)+G(x)=-\cos (x)+C
\end{aligned}
$$

$$
\left\{\begin{aligned}
F(2 x)+G(x) & =x^{2} \\
-1 / 2 F(2 x)+G(x) & =-\cos (x)+C
\end{aligned}\right.
$$

2) Subtract both equations

$$
\begin{aligned}
& 3 / 2 F(2 x)=x^{2}+\cos (x)-C \\
& \begin{aligned}
F(2 x) & =2 / 3 x^{2}+2 / 3 \cos (x)-2 / 3 C \\
F(x) & =2 / 3(x / 2)^{2}+2 / 3 \cos (x / 2)-2 / 3 C \\
& =1 / 6 x^{2}+2 / 3 \cos (x / 2)-2 / 3 C
\end{aligned}
\end{aligned}
$$

3) Add 2 times Equation 2 to Equation 1

$$
\begin{aligned}
& 3 G(x)=x^{2}-2 \cos (x)+2 C \\
& G(x)=1 / 3 x^{2}-2 / 3 \cos (x)+2 / 3 C
\end{aligned}
$$

4) Answer:

$$
\begin{aligned}
u(x, t)= & F(2 x-t)+G(x+t) \\
& =1 / 6(2 x-t)^{2}+2 / 3 \cos ((2 x-t) / 2)-2 / 3 C \\
& +1 / 3(x+t)^{2}-2 / 3 \cos (x+t)+2 / 3 C
\end{aligned}
$$

$$
\begin{gathered}
+1 / 3(x+t)^{2}-2 / 3 \cos (x+t)+2 / 3 c \\
u(x, t)=1 / 6(2 x-t)^{2}+2 / 3 \cos ((2 x-t) / 2)-2 / 3 \cos (x+t)
\end{gathered}
$$

(No need to simplify)
VI- FIRST-ORDER PD
Example: Solve $\left(1+x^{2}\right) u_{x}+e^{y} u_{y}=0$

$$
\begin{aligned}
& \quad \frac{d y}{d x}=\frac{e^{y}}{1+x^{2}} \quad(=\text { Slope }) \\
& \Leftrightarrow \quad\left(1+x^{2}\right) d y=e^{y} d x \\
& \Leftrightarrow \quad \int \frac{d y}{e^{y}}=\int \frac{d x}{1+x^{2}} \\
& \Leftrightarrow \quad-e^{-y} d y=\int \frac{1}{1+x^{2}} d x \\
& \Leftrightarrow \quad C=e^{-y}-\operatorname{TAN}^{-1}(x)+C \\
& \Leftrightarrow \quad \operatorname{TAN}^{-1}(x)
\end{aligned}
$$

Solution:

$$
u(x, y)=f(?)=f\left(-e^{-y}-\tan ^{-1}(x)\right) \quad\left(=f\left(e^{-y}+\tan ^{-1}(x)\right)\right)
$$

