LECTURE 10 - IMT + SUBSPACES

I- IMT (continued)

Last time: Talked about the Invertible Matrix Theorem, which basically tells us when a matrix are invertible, and that invertible matrices are awesome.

Example: Is the following matrix invertible?
$A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9\end{array}\right] \xrightarrow{\text { REF }}\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3\end{array}\right]$
3 pivots, so YES
Example: If A is 3×3 and the columns of A span R^{3}, are they linearly independent?

YES

Columns of A span R^{3}
$\Rightarrow A$ is invertible (by IMT)
\Rightarrow Columns of A are LI (by IMT)

AMAZING, because Span and LI are two different concepts, but for SQUARE matrices, they're the same!

Example: If A is 4×4 and $A x=0$ has a nonzero solution, does $A x=b$ have a solution for every b ?

NO

$$
(A x=0 \not f>x=0)
$$

$\Rightarrow A$ is not invertible (by IMT)
$\Rightarrow A x=b$ is not always consistent

II- NON-SQUARE MATRICES (Section 2.3)
WARNING: In the IMT, A must be $n \times n!!!$ For non-square matrices, the IMT is FALSE!

Example:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Then:

$$
A B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

So $A B=I \quad(\nRightarrow A$ is invertible)
BUT:

$$
B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \neq I
$$

So $B A \neq I$, so A is NOT invertible!

In fact, let me show you that non-square matrices are NEVER invertible.

Example: Could a 2×3 matrix be invertible? (Columns $>$ Rows)
NEVER!

$$
A=\left[\begin{array}{cc}
\text { Free var } \\
* & \downarrow \\
* &
\end{array}\right]
$$

A has at most 2 pivots (<3)
\Rightarrow At least 1 free variable

$$
\Rightarrow(A x=0 \not p x=0)
$$

$\Rightarrow A$ is NOT invertible (Why? see \# 23 in 2.1)

Example: Could a 3×2 matrix be invertible? (Rows > Columns) NEVER!

$$
A=\left[\begin{array}{ll}
* & \\
& * \\
0 & 0
\end{array}\right]
$$

A has at most 2 pivots (<3)
$\Rightarrow A$ doesn't have a pivot in every row
$\Rightarrow A x=b$ is not always consistent (by Row Theorem)
$\Rightarrow A$ is not invertible (see \# 24 in 2.1)

Therefore, Invertible matrices must be SQUARE

III- SUBSPACES (Section 2.8)

WARNING: Sections 2.8 and 2.9 are VERY difficult and abstract!

GOAL: What sort of "info" does a matrix A give us?
To do this, we'll need to define the notion of a subspace (which is the framework we'll be dealing with, just like a frame of reference in physics)

Definition: A Subspace of R^{n} is any set H in R^{n} such that:

1. O is in H
2. If u and v are in H, then $u+v$ is in H
3. If u is in H, then $c u$ is in H (for any number c)

So subspaces are special regions in R^{n} that satisfy those 3 properties!
(Compare this with linear transformations, similar properties)

Ex 1: $H=x$-axis in R^{2}

$$
H=\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], x \text { is in } R\right\}
$$

1) Is $0=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in H ?

Yes, $\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$ with $x=0$
2) Suppose $u=\left[\begin{array}{l}x \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}y \\ 0\end{array}\right]$ are in H

Then $u+v=\left[\begin{array}{l}x \\ 0\end{array}\right]+\left[\begin{array}{l}y \\ 0\end{array}\right]=\left[\begin{array}{c}x+y \\ 0\end{array}\right]$ is in H
3) Suppose $u=\left[\begin{array}{l}x \\ 0\end{array}\right]$ is in H

Then $c u=c\left[\begin{array}{l}x \\ 0\end{array}\right]=\left[\begin{array}{c}c x \\ 0\end{array}\right] \quad$ is $\operatorname{in} H$
Ex 2: $H=\{0\}$
$E \times 3: H=R^{n}$
(Non) Ex 4: $H=$ Line $y=x+2$ in R^{2}

NO, $\mathbf{O}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is not in it
(Non) Ex 5:
$H=$ First quadrant in R^{2}

$$
=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad x \geqslant 0 \& y \geqslant 0\right\}
$$

3) $u=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is in H

But $(-2) u=(-2)\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}-2 \\ -2\end{array}\right] \quad$ is NOT in H

So NOT a subspace
(Non) Ex 6: $H=$ First and Third Quadrant in R^{2}

$$
=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad x y \geqslant 0\right\}
$$

NO: 2) $u=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is in H because $(1)(2)=2 \geqslant 0$
$v=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$ is in H because $(-2)(-1)=2 \geqslant 0$
But $u+v=\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{l}-2 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is not in H because $(-1)(1)=-1<0$
Luckily, we never have to check that H is a subspace, because we have the following super useful fact:

FACT: The Span of anything is always a subspace!

Ex 7: Span $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}=$ Line through $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$

Ex 8: $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$

$$
=\text { Plane through }\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

So typically, subspaces look like lines and planes

