LECTURE 11: NUL(A) AND COL(A)

Let's continue our subspace extravaganza! Our next task is to find an nice way of describing subspaces that will be useful below, which leads to the concept of a basis:

I- BASIS

Definition: A basis for H is a LI set whose span is H
Ex: Is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ a basis for R^{3} ?

1) LI? Yes
2) $S p a n=R^{3}$? Yes

So it's a basis, called the "Standard basis"
Ex: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ is also a basis for R^{3}
(So could have many bases for the same space)

Ex: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is not a basis for R^{3} (LD, "too big")

Ex: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ is not a basis for R^{3} (Span is not R^{3}, "too small")

So a basis is a way of describing a subspace with as few vectors as possible (kind of like a building block of subspaces)

II- NUL(A)

Goal: What "info" does a matrix A give us?

Turns out a matrix tells us two things:

1) How bad it is (= Nullspace)
2) How good it is (= Column Space)

Let's first start with how bad a matrix is!

Definition:

$\operatorname{Nul}(A)=$ Solutions of $A x=0=\{x$ such that $A x=0\}$

Example:

(a) Find $\operatorname{Nul}(A)$ where
$A=\left[\begin{array}{ccccc}1 & -2 & 1 & -5 & 6 \\ 3 & -6 & 4 & -24 & 20 \\ 2 & -4 & 0 & 8 & 1\end{array}\right]$
Solve $A x=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
1 & -2 & 1 & -5 & 6 & 0 \\
3 & -6 & 4 & -24 & 20 & 0 \\
2 & -4 & 0 & 8 & 1 & 0
\end{array}\right]} \\
& y t \\
& \text { - } \downarrow \downarrow \\
& \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc|c}
1 & -2 & 0 & 4 & 0 & 0 \\
0 & 0 & 1 & -9 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& \left\{\begin{array} { c }
{ x - 2 y + 4 t = 0 } \\
{ z - 9 t = 0 } \\
{ S = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x=2 y-4 t \\
z=9 t \\
s=0
\end{array}\right.\right. \\
& x=\left[\begin{array}{l}
x \\
y \\
z \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
2 y-4 t \\
y \\
9 t \\
t \\
0
\end{array}\right]=y\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-4 \\
0 \\
9 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

(y, t free)
$\left.\begin{array}{rl}\operatorname{Nul}(A)=\operatorname{Span} & \left\{\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]\right. \\ \text { R } \\ {\left[\begin{array}{c}-4 \\ 0 \\ 9 \\ 1 \\ 0\end{array}\right]}\end{array}\right\}$

FACT: This will always be a basis!
(b) Find a basis for $\operatorname{Nul}(A)$

Interpretation: $\operatorname{Nul}(A)$ is a plane in R^{5} (with directions \mathbf{u} \& \mathbf{v})

Remarks:

1) $\operatorname{Nul}(A)$ is a subspace of R^{n}

Here: A is 3×5 and $\operatorname{Nul}(A)$ is a subspace of R^{5}
2) $\operatorname{Nul}(A)$ deals with inputs, we're talking about x such that $A x=0$
3) $\operatorname{Nul}(A)$ measures how $\operatorname{bad} A$ is

$$
\begin{aligned}
& \text { Ex: } A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right](B A D) \\
& \operatorname{Nul}(A)=R^{3} \text { (because } A x=0 \text { for every } x \text {) } \\
& \prod_{B I G}
\end{aligned}
$$

$E x: A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(GOOD)
$\operatorname{Nul}(A)=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\} \quad$ (because $A x=0 \Rightarrow x=0$)
\uparrow
SMALL

The bigger the Nullspace, the worse the matrix
III- COLUMN SPACE

On the other hand, there's the column space, which measures how good a matrix is!

Definition: $\operatorname{Col}(A)=$ Span of columns of A

Ex: $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]\right\}(=\text { Span of columns of } A)
$$

Example: Find a basis for $\operatorname{Col}(A)$, where:
$A=\left[\begin{array}{ccccc}\downarrow & & \downarrow & \downarrow \\ 1 & -2 & 1 & -5 & 6 \\ 3 & -6 & 4 & -24 & 20 \\ 2 & -4 & 0 & 8 & 1\end{array}\right]$
REF
$\longrightarrow\left[\begin{array}{ccccc}1 & 2 & 1 & -5 & 6 \\ 0 & 0 & 1 & -9 & 2 \\ 0 & 0 & 0 & 0 & -7\end{array}\right]$

Note: Pivots in columns 1, 3, 5

IMPORTANT: GO BACK TO A !!!

FACT: The pivot columns of A form a basis for $\operatorname{Col}(A)$

Basis: $\left\{\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}6 \\ 20 \\ 1\end{array}\right]\right\}$
(Columns 1, 3, 5 of A)

Says that $\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}6 \\ 20 \\ 1\end{array}\right]\right\}$

Remarks:

1) $\operatorname{Col}(A)$ is a subspace of R^{m} (Column)

Here: A is $3 \times 5, \operatorname{CoI}(A)$ is a subspace of R^{3}
2) $\operatorname{Col}(A)$ deals with outputs (mouthput):
b is in $\operatorname{Col}(A) \Leftrightarrow A x=b$ has a solution
3) Automatically tells us that Columns 2 and 4 of A are LD
4) $\operatorname{Col}(A)$ measures how good a matrix is

Ex: $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ (BAD)

$$
\begin{gathered}
\operatorname{Col}(A)=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\} \\
\uparrow
\end{gathered}
$$

SMALL
Ex: $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
\operatorname{Col}(A) & =\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \\
& =R^{3}<-\operatorname{BIG}
\end{aligned}
$$

The bigger the Column Space, the better the matrix

Note: $\operatorname{CoI}(A)$ actually helps us find bases!

Example: Find a basis for
$H=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -4 \\ -3\end{array}\right],\left[\begin{array}{c}-3 \\ 6 \\ 7\end{array}\right],\left[\begin{array}{c}-4 \\ -2 \\ 6\end{array}\right]\right\}$

SAME as finding a basis for $\operatorname{Col}(A)$, where:

$$
A=\left[\begin{array}{ccc}
1 & -3 & -4 \\
-4 & 6 & -2 \\
-3 & 7 & 6
\end{array}\right] \xrightarrow{\text { REF }}\left[\begin{array}{ccc}
1 & -3 & -4 \\
0 & -6 & -18 \\
0 & 0 & 0
\end{array}\right]
$$

Basis for $H: \quad\left\{\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 6 \\ 7\end{array}\right]\right\} \quad$ (So H is a plane in R^{3})

Example: With A as above, Find a basis for $\operatorname{Nul}(A)$
Continue row-reducing:

$$
\begin{aligned}
& \text { REF } \downarrow \\
& {\left[\begin{array}{cccc}
1 & -3 & -4 & 0 \\
0 & -6 & -18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 0 & 5 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \left\{\begin{array} { l }
{ x + 5 z = 0 } \\
{ y + 3 z = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=-5 z \\
y=-3 z
\end{array}\right.\right. \\
& \boldsymbol{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-5 z \\
-3 z \\
z
\end{array}\right]=z\left[\begin{array}{c}
-5 \\
-3 \\
1
\end{array}\right] \\
& \text { Basis for } \operatorname{Nul}(A):\left\{\left[\begin{array}{c}
-5 \\
-3 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

