LECTURE 12: DIMENSION AND RANK

I- DIMENSION

Today: All about dimension, which is the size of a subspace

Definition: $\operatorname{dim}(H)=$ Number of vectors in a basis of H

Ex: What is $\operatorname{dim}\left(\mathrm{R}^{3}\right)$?

1) Find a basis for $R^{3}:\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
2) Count the number of vectors in that basis:

Ans: 3
(Intuitively: R^{3} has 3 'directions')
Ex: $H=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$
Basis: $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$

$\operatorname{Dim}=1$
(THIS is why lines are 1 dimensional, only have 1 direction)

Note: Dimensions are pretty neat!

Ex: 3 LI vectors in R^{3} (di m=3) automatically span R^{3}

II- RANK

Let's apply dimension to the concepts of $\operatorname{Nul}(A)$ and $\operatorname{Col}(A)$ discussed last time!

Example: (EXCELLENT Exam Question)

Let $\left.\left.A=\begin{array}{ccccc}3 & 0 & 6 & 9 & 0 \\ 2 & 0 & 4 & 7 & 2 \\ 3 & 0 & 6 & 6 & -6\end{array}\right] \stackrel{\text { REF }}{\sim} \begin{array}{ccccc}(1) & -2 & 5 & 4 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for $\operatorname{Col}(A)$

Pivots in Columns 1 and 3

Basis: $\left\{\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}9 \\ 7 \\ 6\end{array}\right]\right\}$ (2 vectors)
(b) Find $\operatorname{dim}(\operatorname{Col}(A))=\operatorname{Rank}(A)$

Ans: 2

Definition: $\operatorname{Rank}(A)=\operatorname{Dim}(\operatorname{CoI}(A))=\#$ of Pivots
Note:

1) The bigger Rank (A), the better A is

Ex: $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad$ (bad), $\operatorname{Rank}(A)=0$ (small)

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad(g o o d), \operatorname{Rank}(A)=3(b i g)
$$

2) Rank (A) gives you the "true" size of A

Ex: $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right] \quad$ is 3×3

But has Rank = 1, so it really has size 1, only 1 piece of info
(c) Find a basis for $\operatorname{Nul}(A) \quad(<-A x=0)$

$$
\begin{aligned}
& y \text { t } \\
& \text { 」 } \downarrow \\
& A \sim\left[\begin{array}{cccc}
1 & -2 & 5 & 4 \\
0 & 0 & 3 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & -2 & 0 & -6 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \left\{\begin{array} { c }
{ x - 2 y - 6 t = 0 } \\
{ z + 2 t = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x=2 y+6 t \\
z=-2 t
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\underline{x}}=\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{c}
2 y+6 t \\
y \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 y \\
y \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
6 t \\
0 \\
-2 t \\
t
\end{array}\right] \\
& =y\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
6 \\
0 \\
-2 \\
1
\end{array}\right] \\
& \text { Basis: }\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
6 \\
0 \\
-2 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

(d) Find $\operatorname{Dim}(\operatorname{Nul}(A))$
$\operatorname{Dim}(\operatorname{Nul}(A))=2=\#$ of free variables

III- RANK-NULLITY THEOREM

(e) Calculate:
$\operatorname{Rank}(A)+\operatorname{Dim}(\operatorname{Nul}(A))$
$=2+2$
$=4$
$=n(=\#$ columns of A)

FACT: [RANK-NULLITY THEOREM]

$$
\operatorname{Rank}(A)+\operatorname{Dim}(\operatorname{Nul}(A))=n \quad(*)
$$

Remarks:

1) n as in Nullity
2) $\operatorname{Rank}(A)=\#$ Pivots
$\operatorname{Dim}(\operatorname{Nul}(A))=$ \# Free Variables

So (*) just says: \# Pivots + \# Free variables = \# Columns
3) Intuitively:
$\operatorname{Rank}(A)$ measures how GOOD A is
$\operatorname{Dim}(\operatorname{Nul}(A))$ measures how BAD A is

So (*) says that they balance out, like the Yin Yang of Math!

IV-IMT DELUXE

Now that we know about Col and Rank, we can "upgrade" our IMT
THEOREM [IMT DELUXE]
Let A be $n \times n$ (Think $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$)
Then:

1) A is invertible
2) $\operatorname{Rank}(A)=n, \operatorname{Col}(A)=R^{n}$
3) $\operatorname{Nul}(A)=\{0\}, \operatorname{dim}(\operatorname{Nul}(A))=0$
4) (The columns of A form a basis for R^{n})

V-COORDINATES

Lastly, I'd like to cover a fun topic not related to rank, but related to bases. The real reason bases are so important is that they allow us to define coordinates

Example: Le \dagger

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\} \quad \text { be a basis for } R^{2}
$$

(a) Find x given $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$

$$
\begin{aligned}
& \text { "coordinates of } x \\
& \text { with respect to } \mathrm{B} "
\end{aligned}
$$

All this means is: To find x, you have to go 3 steps in the $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ direction and 2 steps in the (think of it as a treasure hunt) $\left[\begin{array}{c}2 \\ -1\end{array}\right]$ direction

Definition: $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ means:

$$
\begin{gathered}
\underline{x}=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
7 \\
1
\end{array}\right] \\
\boldsymbol{B}
\end{gathered}
$$

Picture: Here we're given the number of steps \& we want to find x

(b)

$$
\begin{aligned}
& \text { Find }[x]_{B} \text { given } x=\left[\begin{array}{c}
5 \\
-1
\end{array}\right] \\
& l^{B} \\
& {[x]_{\boldsymbol{B}}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \text { means } a\left[\begin{array}{l}
1 \\
1
\end{array}\right]+b\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1
\end{array}\right]=\underline{x}} \\
& \text { (Want To Find } \\
& \text { = WTo) } \\
& {\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{cc|c}
1 & 2 & 5 \\
1 & -1 & -1
\end{array}\right] \xrightarrow{\text { PREF }}\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

$$
\Rightarrow \quad[x]_{B}=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Picture: Here we're given x and we want to find the number of steps $[x]_{B}$

(We'll come back to coordinates in section 5.4)

VI- CHANGE OF COORDINATES MATRIX (optional)

Matrix way of doing the previous problem (faster and more awesome)

$$
\begin{aligned}
& B \\
& \lfloor J
\end{aligned}
$$

Let $P=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$ (change of coordinates matrix)

And use:

FACT: $\quad P[x]_{B}=x$
(a) $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
(a) $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$

$$
x=P[x]_{B}=\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

(b) $x=\left[\begin{array}{c}5 \\ -1\end{array}\right]$
$x=P[x]_{B}$
$\Rightarrow[x]_{B}=P^{-1} x$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]^{-1}\left[\begin{array}{c}
5 \\
-1
\end{array}\right]=-\frac{1}{3}\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
5 \\
-1
\end{array}\right] \\
& =-\frac{1}{3}\left[\begin{array}{c}
-3 \\
6
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

Note: Think of $[x]_{B}$ as a 'barcode' and P as a barcode scanner. Then $P[x]_{B}=x$ means that P scans the barcode $[x]_{B}$ and tells you what the item x is

