LECTURE 13: DETERMINANTS

Welcome to my favorite math topic of all time: DETERMINANTS!!!

I- CALCULATING DETERMINANTS

Definition: $\operatorname{det}(A)=|A|=$ Some number associated to A
(The determinant is a magical number that gives us TONS of useful info about A. For example, we'll see today that it'll give us a 1 second way of determining if A is invertible)

How do we calculate determinants? Just like for inverses, we proceed step by step

Ex: $|[-7]|=-7$ (so doesn't have to be ≥ 0)
Ex: $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$ (similar to the formula of 2×2 inverses)

Ex: $\left|\begin{array}{ccc}2 & 3 & 0 \\ 2 & 0 & 3 \\ -1 & 1 & 1\end{array}\right|=$?

STEP 1: Pick a row or column (usually one with lots of 0 's)
Here: Row 1

STEP 2: SIGN TABLE: Start with + on the upper-left corner, and every time you jump, you change signs
$\left|\begin{array}{c}+-+ \\ -+- \\ +-+\end{array}\right|$

This tells us:

$$
\left|\begin{array}{ccc}
\mid 2 & 3 & 0 \\
2 & 0 & 3 \\
-1 & 1 & 1
\end{array}\right|=+2(\ldots)-3(\ldots)+0(\ldots)
$$

STEP 3: It's Bomberman time!!!

Bomberman: Fun game where the character places a bomb, and the bomb destroys everything in the same row and column.

For example:
$\left|\begin{array}{ccc}\boldsymbol{y} & \\ 2 & 3 & 0 \\ 2 & 0 & 3 \\ -1 & 1 & 1\end{array}\right|=\left|\begin{array}{ll}0 & 3 \\ 1 & 1\end{array}\right|$

And this is how you calculate determinants！For every number in the row／column you picked（here Row 1），you place a bomb at that number and you take the determinant of the rest！
$\left|\begin{array}{ccc}\text { と } & \text { 火 } & \text { と } \\ 2 & 0 & 3 \\ 2 & 0 & 3 \\ -1 & 1 & 1\end{array}\right|=+2\left|\begin{array}{ll}0 & 3 \\ 1 & 1\end{array}\right|-3\left|\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right|+0\left|\begin{array}{cc}2 & 0 \\ -1 & 1\end{array}\right|$
$=2((0)(1)-(3)(1)) 3(2)(1)-(3)(-1))$

+ Q（2）$(1)-(0)(-1))$
$=2(-3)-3(5)$
$=-21$

Example：Expand along Column 2

$$
\begin{aligned}
\left|\begin{array}{lc}
1 & 0 \\
3 & -1 \\
6 & 5 \\
9 & 7
\end{array}\right|= & (-0)\left|\begin{array}{ll}
3 & 5 \\
6 & 7
\end{array}\right|+0\left|\begin{array}{cc}
1 & -1 \\
6 & 7
\end{array}\right|-9\left|\begin{array}{cc}
1 & -1 \\
3 & 5
\end{array}\right| \\
& =-9(5+3) \\
& \neq-72
\end{aligned}
$$

NOTICE how the O＇s were helpful here！In fact，let＇s do a Bomberman Extravaganza！

Example:

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\sqrt{5} & 4 & 0 & \frac{1}{0} & \infty \\
\pi & e & 3 & 42 & i \\
\lambda & 0 & 0 & 2 & 3 \\
9001 & 0 & 0 & 5 & 7
\end{array}\right|=(+1)\left|\begin{array}{cccc}
4 & 0 & \frac{1}{0} & \infty \\
e & 3 & 42 & i \\
0 & 0 & 2 & 3 \\
0 & 0 & 5 & 7
\end{array}\right|(-0) \cdots \\
& =(-0) \cdots+3\left|\begin{array}{lll}
4 & \frac{1}{0} & \infty \\
0 & 2 & 3 \\
0 & 5 & 7
\end{array}\right| \\
& =(3)(4) \quad\left|\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right| \\
& =12(14-15) \\
& =-12
\end{aligned}
$$

II- DETERMINANTS AND ROW-REDUCTION
You can also evaluate determinants using row-reduction (and in general that's how computers evaluate them because it's faster)

Rules:

1. Interchanging two rows puts a minus sign in front of det
2. Dividing by 2 puts a 2 in front of let ("You factor 2 out")
3. Adding a multiple of a row to another doesn't change de
(Amazing: The most important operation doesn' \dagger do anything to get!)

Example:

$$
\begin{aligned}
(\div 3)\left|\begin{array}{ccc}
2 & 13 & -7 \\
1 & 5 & -3 \\
3 & -3 & 3
\end{array}\right| & =3\left|\begin{array}{ccc}
2 & 13 & -7 \\
1 & 5 & -3 \\
1 & -1 & 1
\end{array}\right| \\
& \left.=(-3)\left|\begin{array}{ccc}
1 & 5 & -3 \\
2 & 13 & -7 \\
1 & -1
\end{array}\right| \right\rvert\,(x-2) \\
& =(-3)\left|\begin{array}{ccc}
1 & 5 & -3 \\
0 & 3 & -1 \\
n & -1 & 4
\end{array}\right| 1(x-1)
\end{aligned}
$$

$$
\begin{array}{rl}
& \left|\begin{array}{ccc}
0 & 3 & -1 \\
0 & -6 & 4
\end{array}\right|(\div-2) \\
= & (-3)(-2)\left|\begin{array}{ccc}
1 & 5 & -3 \\
0 & 3 & -1 \\
0 & 3 & -2
\end{array}\right| L^{(x-1)} \\
=6 & 6 \\
0 & 3 \\
0 & 0
\end{array}\left|\begin{array}{lll}
1 & -1
\end{array}\right|
$$

(Works REALLY well with larger matrices!)

III- PROPERTIES OF DETERMINANTS

Determinants have REALLY nice properties!
MY SINGLE FAVORITE PROPERTY:

INT DELUXE DELUXE
A is invertible $\Leftrightarrow>\operatorname{det}(A) \neq 0$

A is invertible «<> $\operatorname{det}(A) \neq 0$

(In other words, this gives us a 1 second way of checking if A is invertible)

Ex: $\left|\begin{array}{ccc}2 & 13 & -7 \\ 1 & 5 & 3 \\ 3 & -3 & 3\end{array}\right|=-18 \neq 0 \quad$ Invertible!

Ex: $\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=4-4=0 \quad$ Not invertible
Other properties:

1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
2) $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$
3) $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$

Example: Suppose $A=P D P^{-1}$ ("A is similar to $D^{\prime \prime}$, Chapter 5)
Show $\operatorname{det}(A)=\operatorname{det}(D)$

```
det(A)= det(PDP-1}
    = det(P) det(D) det(P-1}
    = det(P) det(D) (1/\operatorname{det}(P))
    = det(D)
```

Example: Suppose $Q^{\top} Q=I$ (" Q is orthogonal", Chapter 6)

Show $\operatorname{det}(Q)= \pm 1$
$Q^{\top} Q=I$
$\Rightarrow \operatorname{det}\left(Q^{\top} Q\right)=\operatorname{det}(I)=1$
$I=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
$\Rightarrow \operatorname{det}\left(Q^{\top}\right) \operatorname{det}(Q)=1$
$\Rightarrow \operatorname{det}(Q) \operatorname{det}(Q)=1$
$\Rightarrow(\operatorname{det}(Q))^{2}=1$
$\Rightarrow \operatorname{det}(Q)= \pm 1$

WARNING:

$\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$
$\operatorname{det}(c A) \neq c \operatorname{det}(A)$
(dat is NOT linear!)
$E x: A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
$|A|+|B|=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|+\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0+0=0$

$$
|A+B|=\left|\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1
$$

Ex: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad c=3$

$$
\begin{aligned}
& c|A|=3\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=3(1)=3 \\
& |c A|=\left|3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right|=\left|\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right|=9
\end{aligned}
$$

