LECTURE 14: APPLICATIONS OF DETERMINANTS

Today: All about applications of determinants, so you can see how awesome they really are!

I- CRAMER' S RULE
First of all, determinants allow us to solve systems of equations in a snap!

Example: Use Cramer's Rule to solve:

$$
\begin{aligned}
& \left\{\begin{array}{l}
-5 x+3 y=9 \\
3 x-y=-5
\end{array}\right. \\
& {\left[\begin{array}{rr}
-5 & 3 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
9 \\
-5
\end{array}\right]} \\
& A \quad x=b
\end{aligned}
$$

Cramer's Rule: $|A|$ but with b in first column

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{rr}
9 & 3 \\
-5 & -1
\end{array}\right|}{\left|\begin{array}{rr}
-5 & 3 \\
3 & -1
\end{array}\right|}=\frac{6}{-4}=-3 / 2 \\
& \left.y=\frac{|A|}{\left|\begin{array}{cc}
-5 & 9 \\
3 & -5
\end{array}\right|}=\frac{-2}{-5} \begin{array}{l}
3 \\
3
\end{array}-\frac{1}{\mid} \right\rvert\,
\end{aligned}
$$

Answer:

$$
\left.x=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-3 / 2 \\
1 / 2
\end{array}\right]\right) \text { wow!!! }
$$

(This gives us a 1 second way of solving a system, without using rowreduction! But in practice it's a pain, Ex: To solve a 3×3 system, have to find four 3×3 determinants)

II- INVERSES
Just like we can use determinants to solve systems, we can also use determinants to find the inverse of a matrix!

Example: Find A^{-1} where

$$
A=\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right]
$$

$$
|A|=\ldots=-1
$$

$$
A^{-1}=\left(\begin{array}{ll}
|A|=\ldots=-1 \\
|A|
\end{array}\left[\begin{array}{lll}
+\left|\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right| & -\left|\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right| & +\left|\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right| \\
-\left|\begin{array}{ll}
6 & 7 \\
3 & 4
\end{array}\right| & +\left|\begin{array}{ll}
3 & 7 \\
2 & 4
\end{array}\right| & -\left|\begin{array}{ll}
3 & 6 \\
2 & 3
\end{array}\right| \\
+\left|\begin{array}{ll}
6 & 7 \\
2 & 1
\end{array}\right| & -\left|\begin{array}{ll}
3 & 7 \\
0 & 1
\end{array}\right| & +\left|\begin{array}{ll}
3 & 6 \\
0 & 2
\end{array}\right|
\end{array}\right]\right.
$$

(= matrix with +/- signs and all mini determinants.
Basically, you make the sign table and place bombs everywhere!)

$=\frac{1}{-1}\left[\begin{array}{ccc}5 & 2 & -4 \\ -3 & -2 & 3 \\ -8 & -3 & 6\end{array}\right]^{\top}$
$=-\left[\begin{array}{rrr}5 & -3 & -8 \\ 2 & -2 & 3 \\ 4 & 3 & 6\end{array}\right]$
$=\left(\left[\begin{array}{ccc}-5 & 3 & 8 \\ -2 & 2 & 3 \\ 4 & -3 & -6\end{array}\right]\right.$
Example:- Find $A-1$ where $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$A^{-1}=(1 /|A|)\left[\begin{array}{ll}+d & -c \\ -b & +a\end{array}\right]^{\top}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
(THIS is how you get the formula for 2×2 inverses)

The final three applications are more geometric in nature
Example: Find the area of the parallelogram with vertices

$$
(0,-2),(6,-1),(-3,1),(3,2)
$$

Picture:

$u=\left[\begin{array}{c}6 \\ -1\end{array}\right]-\left[\begin{array}{c}0 \\ -2\end{array}\right]=\left[\begin{array}{l}6 \\ 1\end{array}\right]$
$v=\left[\begin{array}{c}-3 \\ 1\end{array}\right]-\left[\begin{array}{c}0 \\ -2\end{array}\right]=\left[\begin{array}{c}-3 \\ 3\end{array}\right]$
Fact: The area of the parallelogram determined by u and v is

$$
\text { Area }=|\operatorname{det}[u \mid v]|
$$

Here:

$$
\left|\operatorname{det}\left[\begin{array}{rr}
6 & -3 \\
1 & 3
\end{array}\right]\right|=|21|=21
$$

Similarly: Volume of Parallelipiped determined by u, v, w is

Volume $=|\operatorname{det}[u|v| w]|$

(Note: It doesn't matter if you put u and v as rows or as columns, since $\left.\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)\right)$

IV- GENERAL AREAS

In fact, using determinants, you can also calculate areas and volumes of more general objects!

Setting:

Suppose you have a region R and apply a linear transformation T to get another region R^{\prime}

Then:
FACT:
$\operatorname{Area}\left(R^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Area}(R)$
($A=$ matrix of T)
So the determinant is really a measure of how the area of R changes!
(Optional Sidenote: This is PRECISELY why in Math 2E, you have a determinant in the Jacobian; need to know how the area of the square dxdy changes when you change variables)

Example: (Similar to last problem on Winter 2019 exam)
Find the area of the triangle with vertices $(1,2),(3,4),(4,0)$

$(1,0)$

(Clever way: It's half a parallelogram! But here let's see why the formula for a parallelogram works)

STEP 1: Find R

Idea: Triangle $=R^{\prime}$
Want to find R
Here: $R=$ Triangle with vertices $(0,0),(1,0),(0,1)$
(always an easier version of R^{\prime})

STEP 2: Find T (or A)
UPSHOT: Don't need to find $T(x)$ for every $x!!!$ Enough to find

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } T\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

But

$$
\begin{aligned}
& T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \\
& T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]-\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
\end{aligned}
$$

Hence:

$$
A=\left[\begin{array}{cc}
3 & 2 \\
-2 & 2
\end{array}\right]
$$

STEP 3: By (*),
$\operatorname{Area}\left(R^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Area}(R)$

$$
\begin{aligned}
& =\left|\operatorname{det}\left[\begin{array}{rr}
2 & 2 \\
3 & -2
\end{array}\right]\right|(1 / 2 * 1 * 1) \quad(R=\text { right triangle } w / \text { sides } 1 \& 1) \\
& =|-10|(1 / 2)
\end{aligned}
$$

(Optional Sidenote: Technically, here T not a linear transformation since $T(0,0) \neq(0,0)$; so in theory, need to shift the triangle so that the vertex $(1,2)$ becomes $(0,0)$ and re-do this problem. But the same method works here anyway...)

V- AS EASY AS $4 / 3 \pi a b c$

In fact, the exact same formula not only holds for areas, but also for volumes!

Fact: $\operatorname{Vol}\left(R^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Vol}(R)$

Example: Find the volume of the ellipsoid $(x / a)^{2}+(y / b)^{2}+(z / c)^{2} \leq 1$
(Compare with Math 2D/2E; here no messy triple integrals, just some clean linear algebra!)

STEP 1: Here
$R^{\prime}=$ ellipsoid
$R=$ unit ball, $x^{2}+y^{2}+z^{2} \leq 1$
(Why? Ellipsoid is a stretched version of unit ball)

STEP 2: Find A
$T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right] \quad T\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ b \\ 0\end{array}\right] \quad T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ c\end{array}\right]$
$A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$
STEP 3:
$\operatorname{Vol}\left(R^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Vol}(R)$

$$
=\left|\operatorname{det}\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\right|(4 / 3) \pi(1)^{3} \quad(R=\text { unit ball })
$$

$=|a b c| 4 / 3 \pi$
$=4 / 3 \pi a b c$
WOW, no weird integration required!

