LECTURE 15: MIDTERM REVIEW

Today: All about True/False Questions, but first let me wrap up one more thing from 3.3 (which is fair game for the exam)

I- AS EASY AS $4 / 3 \pi a b c$

Recall: If R is a region and you apply a linear transformation T to it to get another region R^{\prime}

Fact: $\operatorname{Vol}\left(R^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Vol}(R)$

Example: Find the volume of the ellipsoid $(x / a)^{2}+(y / b)^{2}+(z / c)^{2} \leq 1$
(Compare with Math 2D/2E; here no messy triple integrals, just some clean linear algebra!)

STEP 1: Here
$\mathrm{R}^{\prime}=$ ellipsoid
$R=$ unit ball, $x^{2}+y^{2}+z^{2} \leq 1$
(Why? Ellipsoid is a stretched version of unit ball)

STEP 2: Find A

$$
T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
b \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
c
\end{array}\right]
$$

$$
A=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]
$$

STEP 3:
$\operatorname{Vol}\left(R^{\prime}\right)=|\operatorname{det}(A)| \operatorname{Vol}(R)$
$=\left|\operatorname{det}\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]\right|(4 / 3) \pi(1)^{3} \quad(R=$ unit ball $)$
$=|a b c| 4 / 3 \pi$

WOW, no weird integration required!

II- TRUE/FALSE EXTRAVAGANZA!

Remember: 111 T/F questions are available on YouTube!
(F) (a) R^{2} is a subspace of R^{3}
R^{2} CANNOT be a subspace of R^{3} because R^{2} is not even a subSET of R^{3}
How can $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ be of the same form as $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$?
(If you plug in $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ in a program that accepts only things like $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
You'll get an error message)
$\operatorname{BUT}\left\{\left.\left[\begin{array}{l}x \\ y \\ 0\end{array}\right] \right\rvert\, x, y\right.$ in $\left.R\right\}$ IS a subspace of R^{3}
(b) $H=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, y \geqslant 0\right\}$ is a subspace of R^{2}
$\left\lceil\begin{array}{l}0 \\ 1\end{array}\right]$ is in H but $(-2)\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is not in $H(-2<0)$
$\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in H but $(-2)\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ -2\end{array}\right]$ is not in $H(-2<0)$
(T) $(c) H=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x^{2}+y^{2}=0\right\}$ is a subspace of R^{2}

You MIGHT think that it's not because there are squares, but
$H=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\} \quad$ which IS a subspace of R^{2}
(Important to find explicit counterexample: If you try it out, you'll see there is none)
T
(d) If $A(m \times n)$ has n pivot columns, then $\operatorname{NuI}(A)=\{0\}$

$$
M\left[{ }^{*}{ }^{N}+\right]
$$

Pivot in every column $\Rightarrow>$ No free variables

$$
\begin{aligned}
& \Rightarrow A x=0=x=0 \\
& \Rightarrow \operatorname{Nul}(A)=\{0\}
\end{aligned}
$$

(F) (e)

$$
\begin{aligned}
& \left(\left(\left.\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8 \\
5 & 6 & 7 & 8 & 9
\end{array} \right\rvert\,=123\right.\right. \\
& =\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\hline 0 & -1 & -2 & -3 \\
\hline 0 & -2 & -4 & -6 \\
\hline & \cdots & -8
\end{array}\right|<\text { LIN DEP! }
\end{aligned}
$$

$$
\left|\begin{array}{c}
0-2-4-6-8 \\
\cdots \\
\cdots
\end{array}\right| \ll
$$

$=0$ (not invertible)
(T)) The matrix $A B+B^{\top} A^{\top}$ is always symmetric $\left(A^{\top}=A\right)$
$\left(A B+B^{\top} A^{\top}\right)^{\top}$
$=(A B)^{\top}+\left(B^{\top} A^{\top}\right)^{\top}$
$=B^{\top} A^{\top}+\left(A^{\top}\right)^{\top}\left(B^{\top}\right)^{\top}$
$=B^{\top} A^{\top}+A B$
$=A B+B^{\top} A^{\top}$
(F) (g) If $A x=b$ is consistent for every b, then $A x=0$ only has the trivial solution

WARNING: For IMT, unless I say A is square, do NOT assume A is square

Example: $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
$A x=b$ is consistent for every b (pivot in every row), but $A x=0$ has a nonzero solution (because 1 free variable)
(T) (h) Same, but A is $n \times n$

By IMT, A is invertible
(F) (i) If $A \sim B(\sim=$ row-equivalent $)$, then $\operatorname{Col}(A)=\operatorname{Col}(B)$

$$
\Delta\left[\begin{array}{c}
1 \\
1, \\
A
\end{array}\right] \sim\left[\begin{array}{c}
11 \\
00
\end{array}\right]
$$

$\operatorname{But} \operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$

$$
\operatorname{Col}(B)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

THIS is why it's important to go back to the original pivot columns!
(T) (j) If A is a 4×9 matrix, then $\operatorname{Nul}(A)$ is at least 5 dimensional

$$
A=4\left[{ }^{*}{ }^{*}{ }^{9}\right]
$$

$\operatorname{Rank}(A)+\operatorname{dim}(\operatorname{Nul}(A))=9$
$\Rightarrow \operatorname{dim}(\operatorname{Nul}(A))=9-\operatorname{Rank}(A)$
But rank (A) 4 (because at most 4 pivots)
$\Rightarrow \operatorname{dim}(\operatorname{Nul}(A)) \quad 9-4=5$
(F)
(k) If A is a 4×6 matrix with 2 pivot columns, then $\operatorname{Nul}(A)=R^{4}$

CANNOT be, $\operatorname{Nul}(A)$ is a subspace of R^{6} !
(I) (I) Every linear transformation $T: R^{n} \rightarrow R^{m}$ has a matrix
$A=\left[T\left(e_{1}\right) T\left(e_{2}\right) \ldots T\left(e_{n}\right)\right]$
(T) (m) If $\operatorname{det}\left(A^{2}\right)-2 \operatorname{det}(A)+\operatorname{det}(I)=0$, then A is invertible $(\operatorname{det}(A))^{2}-2 \operatorname{det}(A)+1=10$ $(\operatorname{det}(A)-1)^{2}=0$
$\operatorname{Det}(A)-1=0$

$$
\operatorname{Det}(A)=10 \text {, so yet }
$$

(F) (n) The following set is a basis for R^{3}

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right],\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]\right\}
$$

$$
x^{-2}\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -18
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
(1) & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right]
$$

Only 2 pivots, so NO
(F)(0) If $A B=I$, then $B A=I$

AGAIN, do NOT assume A is square!

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
\text { Can check } A B=I \text { but } B A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

(F) $(p) A^{2}=O \Rightarrow A=O(O=$ zero matrix $)$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
\end{aligned}
$$

Point: Matrix Algebra is weird, not like usual algebra!
(F)(q) A system with 2 equations in 3 unknowns always has a solution
(1)(q) A system with \angle equations in 3 unknowns always has a solution

$$
\left\{\begin{array}{l}
x+y+z=2 \\
x+y+z=3
\end{array}\right.
$$

(F) (r) If $\{u, v, w\}$ is linearly dependent, then u is a linear combo of v and w

$$
u=\left[\begin{array}{l}
1 \\
0
\end{array}\right] v=\left[\begin{array}{l}
0 \\
1
\end{array}\right] w=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

