LECTURE 9: THE INVERSE OF A MATRIX

Last time: We learned about matrix operations and how to find the inverse of a matrix:

Definition: $A^{-1}$ is the matrix such that:

$$
A^{-1} A=A A^{-1}=I
$$

Today:

1) How to find $A^{-1}$ ?
2) When can we find $A^{-1}$ ? When is $A$ invertible?

I- HOW TO FIND $A^{-1}$
Example: Find $A^{-1}$ where:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 1 \\
0 & 2 & 3
\end{array}\right]
$$

STEP 1 Form a HUGE matrix:

$$
[A \mid I]=\left[\begin{array}{lll|lll}
1 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 3 & 0 & 0 & 1
\end{array}\right]
$$

STEP 2 Row reduce until you get

$$
\rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & \\
0 & 1 & 0 & B L A H \\
0 & 0 & 1 &
\end{array}\right]
$$

(basically RREF, don't overthink it)

$$
\left.\begin{array}{rl}
{[A \mid I}
\end{array}\right]=\left[\begin{array}{lll|lll}
1 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 3 & 0 & 0 & 1
\end{array}\right]
$$

Answer:

$$
A^{-1}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
3 & -1 & -1 \\
-2 & 2 & 1
\end{array}\right]
$$

Example: Find $A^{-1}$ where

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
(x-1)\left(\left[\begin{array}{cc|cc}
1 & -1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]\right.
\end{gathered}
$$

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{cc|cc}
1 & -1 & 1 & 0 \\
0 & 2 & -1 & 1
\end{array}\right](\div 2) \\
& \left.\rightarrow\left[\begin{array}{cc|cc}
1 & -1 & 1 & 0 \\
0 & 1 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right] \hat{( }\right) \\
& \rightarrow\left[\begin{array}{ll|ll}
1 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

II- ELEMENTARY MATRICES

You might ask: "Why in the world does this technique work?"
For this, we need to learn just a little bit about elementary matrices

FACT 1: Can write EROS in terms of "elementary" matrices
Type 1: Multiply a row

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
12 & 15 & 18 \\
0 & 0 & 1
\end{array}\right]
$$

Multiplies second
Row by 3

Type 2: Interchange two rows

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{lll}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right]
$$

## Interchanges

Rows 1 \& 3
(like the identity matrix I, but rows 1 and 3 are swapped)

Type 3: Add a row to another


Adds 4 times the 1st row
To the 3rd row
(like I but $(3,1)^{\text {st }}$ entry is 4 instead of 0 )

FACT 2: Row-reducing is like multiplying by a big matrix $R$ (= product of elementary matrices)

Now let me explain why the above procedure works

$$
[A \mid I] \rightarrow[I \mid O]
$$

In terms of matrices, this means:

FACT 2

$$
\begin{aligned}
& (R)[A \mid I]=[I \mid \bigcup] \\
& {[R A \mid R I]=[I \mid \bigcup]} \\
& {[R A \mid R]=[I \mid ?]}
\end{aligned}
$$

So $R A=I$ and $R=$ ?

But $R A=I$ (and $A$ is square) $\Rightarrow R=A^{-1}$
But also $R=$ ?, so ? $=A^{-1}$

And this is why we always get $A^{-1}$ on the right!
III- INTERPRETATION OF A ${ }^{-1}$

Just like we were able to give a linear transformation interpretation of $A B$ (in terms of composition), we can also give a LT interpretation of $A^{-1}$

$$
T^{-1}(y)=x
$$

If $T$ is a $L T$, then $T^{-1}$ (inverse transformation) is defined by:

$$
T(x)=y \Leftrightarrow T^{-1}(y)=x
$$

Interpretation: If $T$ is a slight, $\mathrm{T}^{-1}$ is the return flight. Whenever $T$ brings you somewhere, $T^{-1}$ brings you back.

In particular $T^{-1}(T(x))=x$

Fact: If the matrix of $T$ is $A$, then the matrix of $T^{-1}$ is $A^{-1}$
(that's why it's called the inverse of A)

## Consequences:

1) $(A B)^{-1}=B^{-1} A^{-1}$
(reverse order! If you put your socks on and then your shoes, you first remove your shoes and then your socks)
2) $\left(A^{-1}\right)^{-1}=A$

## IV- INVERTIBILITY (section 2.3)

Question: Can we always find $A^{-1}$ ? Sadly no!

Definition: $A$ is invertible if there is a matrix $B$ such that

$$
A B=B A=I
$$

Example: Is $A$ invertible?

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

For any $\quad B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

So $A B$ can never be I !
Example: "Find" $A^{-1}$ where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
{\left[\begin{array}{lll}
A & 1 & 1
\end{array}\right]} \\
=(x-1)\left(\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\right. \\
\rightarrow \\
{\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 11 & 0 & 1 & 0 \\
0 & 11 & -1 & 0 & 1
\end{array}\right] L(x-1)}
\end{gathered}
$$

$$
\rightarrow\left[\begin{array}{ccc|ccc}
(1) & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right]
$$

CANNOT turn this into [ I | BLAH]

In fact, $A$ is not invertible, you CANNOT find $B$ such that $A B$ $=B A=I$ !

Notice: Here A only has 2 pivots!

And in fact, this leads us to:

## IV- THE INVERTIBLE MATRIX THEOREM (INT)

Tells us:

1) When a matrix is invertible
2) Invertible matrices are nice

Long Theorem, BUT it's just the Row Theorem and the Column Theorem combined


Keep the following example in mind for the following theorem:

$$
\text { Example: }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

INVERTIBLE MATRIX THEOREM (IMT):
Let $A$ be $n \times n(!!!)$, then the following are equivalent

1) $A$ is invertible ( $A B=B A=I)$
2) $A$ has $n$ pivots
3) $A x=b$ is consistent for every $b$
4) Span of Columns of $A$ is $R^{n}$ (remember $m=n$ )
5) $T(x)=A x$ is onto $R^{n}$
6) $A x=0 \Rightarrow x=0$
7) Columns of $A$ are LI
8) $T(x)=A x$ is one to one
9) $(B A=I$ for some $B)$
10) ( $A B=I$ for some $B$ )
11) ( $A x=b$ has exactly one solution)

ROW THEOREM
(Examples next time)

