Last time: We learned about matrix operations and how to find the inverse of a matrix:

Definition: A^{-1} is the matrix such that:

$$A^{-1} A = A A^{-1} = I$$

Today:

1) How to find A^{-1}?
2) *When* can we find A^{-1}? *When* is A invertible?

I-HOW TO FIND A^{-1}

Example: Find A^{-1} where:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

STEP 1 Form a HUGE matrix:

$$[A \mid I] = \begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 3 & 0 & 0 & 1 \end{bmatrix}$$

STEP 2 Row reduce until you get

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & \text{BLAH} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(basically RREF, don't overthink it)

\[
\begin{bmatrix}
A & \mathbf{1}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & 3 & 0 & 0 & 1
\end{bmatrix}
\]

RREF

\[
\begin{bmatrix}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & -2 & 2 & 1
\end{bmatrix}
\]

(not enough!)

RREF

\[
\begin{bmatrix}
1 & 0 & 0 & 2 & -1 & -1 \\
0 & 1 & 0 & 3 & -1 & -1 \\
0 & 0 & 1 & -2 & 2 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
\mathbf{1} & A^{-1}
\end{bmatrix}
\]

Answer:

\[
A^{-1} = \begin{bmatrix}
2 & -1 & -1 \\
3 & -1 & -1 \\
-2 & 2 & 1
\end{bmatrix}
\]

Example: Find A^{-1} where

\[
A = \begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix}
\]

$(\times \mathbb{I})$\quad \[
\begin{bmatrix}
\mathbf{1} & -1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{bmatrix}
\]
II- ELEMENTARY MATRICES

You might ask: "Why in the world does this technique work?"

For this, we need to learn just a little bit about elementary matrices

FACT 1: Can write EROS in terms of "elementary" matrices

Type 1: Multiply a row

\[
\begin{bmatrix}
1 & -1 & 1 \\
0 & 2 & -1 \\
0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
2 & 0 & 3 \\
-1 & 1 & 0
\end{bmatrix}
\div 2
\]

\[
\rightarrow \begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 2
\end{bmatrix}
\]

\[
\rightarrow \begin{bmatrix}
0 & 1 & \frac{1}{2} \\
0 & 1 & \frac{1}{2} \\
1 & 2 & \frac{1}{2}
\end{bmatrix}
\]

\[
A^{-1} = \begin{bmatrix}
\frac{1}{4} & \frac{1}{2} \\
-\frac{1}{4} & \frac{1}{2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 15 & 18 \\
0 & 0 & 1
\end{bmatrix}
\]

Multiplies second Row by 3
Type 2: Interchange two rows

\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{bmatrix}
=
\begin{bmatrix}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
\end{bmatrix}
\]

Interchanges
Rows 1 & 3

(like the identity matrix I, but rows 1 and 3 are swapped)

Type 3: Add a row to another

\[
\begin{bmatrix}
1 \\
0 \\
0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
11 & 16 & 21 \\
\end{bmatrix}
\]

Adds 4 times the 1st row
To the 3rd row

(like I but (3,1)st entry is 4 instead of 0)

FACT 2: Row-reducing is like multiplying by a big matrix R (= product of elementary matrices)

Now let me explain why the above procedure works
In terms of matrices, this means:

So \(RA = I \) and \(R = ? \)

But \(RA = I \) (and \(A \) is square) \(\Rightarrow R = A^{-1} \)

But also \(R = ? \), so \(? = A^{-1} \)

And this is why we always get \(A^{-1} \) on the right!

III- INTERPRETATION OF \(A^{-1} \)

Just like we were able to give a linear transformation interpretation of \(AB \) (in terms of composition), we can also give a LT interpretation of \(A^{-1} \).
If T is a LT, then T^{-1} (inverse transformation) is defined by:

$$T(x) = y \iff T^{-1}(y) = x$$

Interpretation: If T is a slight, T^{-1} is the return flight. Whenever T brings you somewhere, T^{-1} brings you back.

In particular $T^{-1}(T(x)) = x$

Fact: If the matrix of T is A, then the matrix of T^{-1} is A^{-1}

(that’s why it’s called the inverse of A)

Consequences:

1) $(AB)^{-1} = B^{-1} A^{-1}$

 (reverse order! If you put your socks on and then your shoes, you first remove your shoes and then your socks)

2) $(A^{-1})^{-1} = A$

IV- INVERTIBILITY (section 2.3)

Question: Can we always find A^{-1}? Sadly no!
Definition: A is invertible if there is a matrix B such that

$$AB = BA = I$$

Example: Is A invertible?

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

For any $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

So AB can never be I!

Example: "Find" A^{-1} where

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} A & I \end{pmatrix}$$

$$= (x^{-1}) \begin{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$= (x^{-1}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

(x^{-1})
In fact, A is not invertible, you CANNOT find B such that $AB = BA = I$!

Notice: Here A only has 2 pivots!

And in fact, this leads us to:

IV- THE INVERTIBLE MATRIX THEOREM (IMT)

Tells us:

1) *When* a matrix is invertible
2) Invertible matrices are nice

Long Theorem, **BUT** it’s just the Row Theorem and the Column Theorem combined

Keep the following example in mind for the following theorem:
INVERTIBLE MATRIX THEOREM (IMT):

Let A be $n \times n$ (!!!), then the following are equivalent

1) A is invertible ($AB = BA = I$)
2) A has n pivots
3) $Ax = b$ is consistent for every b
4) Span of Columns of A is \mathbb{R}^n (remember $m = n$)
5) $T(x) = Ax$ is onto \mathbb{R}^n
6) $Ax = 0 \Rightarrow x = 0$
7) Columns of A are LI
8) $T(x) = Ax$ is one to one
9) $(BA = I$ for some B)
10) $(AB = I$ for some B)
11) $(Ax = b$ has exactly one solution)

(Examples next time)