LECTURE 9: THE INVERSE OF A MATRIX

Monday, October 14, 2019 12:28 PM

Last time: We learned about matrix operations and how to find the inverse of a matrix:

Definition: A⁻¹ is the matrix such that:

$$A^{-1} A = A A^{-1} = I$$

Today:

- 1) How to find A^{-1} ?
- 2) <u>When</u> can we find A^{-1} ? When is A invertible?

I- HOW TO FIND A-1

Example: Find A⁻¹ where:

	٢١	ł	2]
A =	1	0	1
	0	2	3 J
	\sim		

STEP 1 Form a HUGE matrix:

$[\cdot + -]$	$\begin{bmatrix} 1 & 1 & 2 & & 1 & 0 & 0 \\ 1 & 0 & 1 & & 0 & 1 & 0 \\ 0 & 2 & 3 & & 0 & 0 & \end{bmatrix}$	
$[A] \perp] =$		

STEP 2 Row reduce until you get

$$\rightarrow \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

(basically RREF, don't overthink it)

$$\rightarrow \begin{bmatrix} 1 & -1 & | & 10 \\ 0 & 2 & | & -1 & 1 \end{bmatrix} (\div 2)$$

$$\rightarrow \begin{bmatrix} 1 & -1 & | & 10 \\ 0 & 1 & | & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} (x_{1})$$

$$\rightarrow \begin{bmatrix} 1 & 0 & | & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & | & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

II- ELEMENTARY MATRICES

You might ask: "Why in the world does this technique work?"

For this, we need to learn just a little bit about elementary matrices

FACT 1: Can write EROS in terms of "elementary" matrices

Type 1: Multiply a row

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 12 & 15 & 18 \\ 0 & 0 & 1 \end{bmatrix}$$

Multiplies second

Row by 3

Type 2: Interchange two rows

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

Interchanges Rows 1 & 3

1

(like the identity matrix I, but rows 1 and 3 are swapped)

Type 3: Add a row to another

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 4 & 5 & 6 \\ 1 & 1 & 6 & 21 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 16 & 21 \end{bmatrix}$$

Adds 4 times the 1st row To the 3rd row

(like I but $(3,1)^{s^{\dagger}}$ entry is 4 instead of 0)

FACT 2: Row-reducing is like multiplying by a big matrix R (= product of elementary matrices)

Now let me explain why the above procedure works

$$\begin{bmatrix} A \mid I \end{bmatrix} \rightarrow \begin{bmatrix} I \mid \bigcirc \\ \end{bmatrix}$$

In terms of matrices, this means:
FACT 2
$$R \begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} I \mid \bigcirc \\ \end{bmatrix}$$

$$[RA|RI] = [I]?$$

So RA = I and R = ?

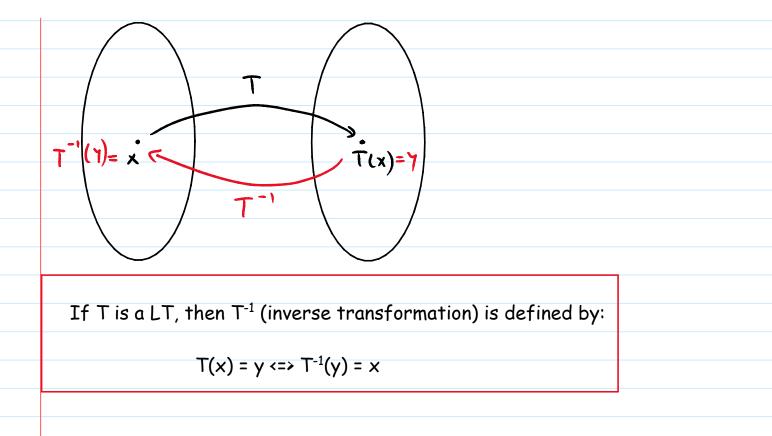
But RA = I (and A is square) => $R = A^{-1}$

But also R = ?, so ? = A^{-1}

And this is why we always get A^{-1} on the right!

III- INTERPRETATION OF A⁻¹

Just like we were able to give a linear transformation interpretation of AB (in terms of composition), we can also give a LT interpretation of A^{-1}



Interpretation: If T is a slight, T⁻¹ is the return flight. Whenever T brings you somewhere, T⁻¹ brings you back.

In particular $T^{-1}(T(x)) = x$

Fact: If the matrix of T is A, then the matrix of T^{-1} is A^{-1}

(that's why it's called the inverse of A)

Consequences:

1) $(AB)^{-1} = B^{-1}A^{-1}$

(reverse order! If you put your socks on and then your shoes, you first remove your shoes and then your socks)
2) (A⁻¹)⁻¹ = A

IV- INVERTIBILITY (section 2.3)

Question: Can we always find A^{-1} ? Sadly no!

efinition: A	s invertible if there is a matr	rix B such that
	AB = BA = I	
xample: Is A	invertible?	
A =	$\begin{bmatrix} 10\\00 \end{bmatrix}$	
For any	$B = \begin{bmatrix} a \\ c \\ d \end{bmatrix}$	

$$AB = \begin{bmatrix} 10 \\ 00 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a \\ b \\ 00 \end{bmatrix} \neq \begin{bmatrix} 10 \\ 01 \end{bmatrix} = I$$

So AB can never be I!

Example: "Find" A⁻¹ where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= (x-i) \left(\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \right)$$

$$\rightarrow \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{array} \right] \left[(x - 1) \right]$$

_	$\left[\begin{array}{c} 1 \\ 0 \end{array} \right] \circ \circ$	100 010 -1-11
7		010
	000	
	ト	

CANNOT turn this into [I | BLAH]

In fact, A is **not** invertible, you **CANNOT** find B such that AB = BA = I !

Notice: Here A only has 2 pivots!

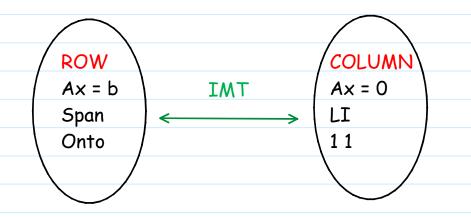
And in fact, this leads us to:

IV- THE INVERTIBLE MATRIX THEOREM (IMT)

Tells us:

- 1) When a matrix is invertible
- 2) Invertible matrices are nice

Long Theorem, **BUT** it's just the Row Theorem and the Column Theorem combined



Keep the following example in mind for the following theorem:

Example: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
INVERTIBLE MATRIX THEOREM (IMT): Let A be n x n (!!!), then the following are equivalent	
 1) A is invertible (AB = BA = I) 2) A has n pivots 3) Ax = b is consistent for every b 4) Span of Columns of A is Rⁿ (remember m = n) 	ROW THEOREM
5) T(x) = Ax is onto R ⁿ 6) Ax = 0 => x = 0 7) Columns of A are LI	COLUMN THEOREM
 8) T(x) = Ax is one to one 9) (BA = I for some B) 10) (AB = I for some B) 11) (Ax = b has exactly one solution) 	

(Examples next time)