I- LINEAR DEPENDENCE

Today's topic du jour is linear independence, which is connected to Ax = 0 in an interesting way.

Example: Are the following vectors related?

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$\frac{\text{YES}}{3} : \left(\begin{array}{c} 2\\3 \end{array}\right) = 2\left[\begin{array}{c} 1\\0 \end{array}\right) + 3\left[\begin{array}{c} 0\\1 \end{array}\right]$$

Rewriting this in terms of the 0 vector, this gives:

$$\frac{1}{3} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + (-2) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$au + bv + cw = 0$$

Definition: $\{u,v,w\}$ is linearly dependent (LD) if there are numbers a, b, c, not all 0, such that:

$$au + bv + cw = 0$$

In other words, there is some linear combo that gives you the **O** vector.

In the above example, a = 1, b = -2, c = -3, so linearly dependent

Example:

$$\{[0],[0],[0]\}$$

$$O\left[\binom{1}{0}\right] + 2\left[\binom{0}{1}\right] + (-1)\left[\binom{0}{2}\right] = \left[\binom{0}{0}\right]$$

$$a = 0, b = 2, c = -1, so LD$$

Note:

- 1) It's ok if some of the coefficients are 0, just not all of them.
- 2) Notice that the first vector is not a linear combo of the other vectors!

Example: Is {u,v,0} linearly dependent?

Yes: 0 u + 0 v + 1 0 = 0

(a = 0, b = 0, c = 1, not all 0)

Fact: In fact, anything with 0 is LD

Question: Why do we require a, b, c to be not all 0?

Because you can always write 0 u + 0 v + 0 w = 0

"Trivial" linear combo (a = 0, b = 0, c = 0)

Which motivates the definition of linear independence:

II- LINEAR INDEPENDENCE

Definition: {u,v,w} is linearly independent (LI) if:

$$au + bv + cw = 0 \Rightarrow a = 0, b = 0, c = 0$$

That is, the **only** way of getting the **O** vector is with the trivial linear combo.

Example: Is the following set LI?

Suppose

$$a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + k \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Then:

$$\begin{cases} a + b + c = 0 \\ b + c = 0 \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}$$

MAGIC

=> LI

$III - A \times = 0$

It turns out there's a really cool connection between LI and Ax = 0

Example: LD or LI?

$$\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 4 \\ 3 \\ 7 \end{bmatrix} \right\}$$

Are there a, b, c (not all 0) such that:

$$a\begin{bmatrix} 1\\2\\0\\1\end{bmatrix} + &\begin{bmatrix} -1\\0\\1\\2\end{bmatrix} + &\begin{bmatrix} -1\\4\\3\\7 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0\end{bmatrix}$$
?

SAME AS:

$$\begin{bmatrix} 1 & -1 & -1 \\ 2 & 0 & 4 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} \alpha \\ k \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A \qquad X = 0$$

$$A \qquad X = 0$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ 2 & 0 & 4 & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 2 & 8 & 0 \end{bmatrix} \xrightarrow{REF} \begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

STUPID WAY:

Back sub:

$$\begin{cases} \alpha = 0 \\ \beta = 0 \end{cases} \Rightarrow X = \begin{bmatrix} \alpha \\ \beta \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

=> LI

SMART WAY:

In REF, there's a pivot in every column of A

- => No free variables
- \Rightarrow Ax = 0 has only one solution: x = 0
- => LI

And this is such an important fact, we'll isolate it in a theorem:

IV- THE COLUMN THEOREM

THE COLUMN THEOREM:

- 1) A has a pivot in every column
- (2) $Ax = 0 \Rightarrow x = 0$
- 3) The columns of A are LI

3) The columns of A are LI

Example: For which h is the following LD?

$$\left\{ \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix}, \begin{bmatrix} -3 \\ 7 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ h \end{bmatrix} \right\}$$

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 7 & 1 \\ -4 & 6 & h \end{bmatrix} \xrightarrow{REF} \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 38+h \end{bmatrix}$$

If 38 + h is not 0, then have 3 pivots => No free var

=> LI

So for LD, want 38 + h = 0

Answer: h = -38

Example: Is the following set LD?

$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$$

Fact: 3 vectors in R^2 are automatically LD (3 > 2)

Why? A has at most 2 pivots, so at least 1 free variable

$$\begin{bmatrix} 1 & 4 & 1 \\ 1 & 8 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \end{bmatrix}$$

V-LI AND SPAN

Note: LI vectors are nice because their span is exactly what you think it is:

Example 1:

Span
$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$
 is a plane in \mathbb{R}^3

Example 2:

LD sets are redundant; you can always remove LD vectors without changing the span (like Jenga)

Example 2 (again)

Span
$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\} = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

You'd never invest in LD vectors, they give you no new info
But LI sets are essential, removing a LI vector changes the
span

(Ex: Try removing a vector in Example 1 and see what you get)

So LI vectors are a good investment, all their info is essential

(Section 2.9: Will see exactly which vectors you can remove)