LECTURE 8: MATRIX ALGEBRA

Saturday, October 12, 2019 3:10 PM

Welcome to Chapter 2 ! While Chapter 1 focused more on systems of equations, this chapter will focus on matrices. In fact today we're going to cover the matrix... algebra!

I- MATRIX OPERATIONS

Definition: A matrix A is a table of numbers

Ex:	A =	[]	2	3]	2x3 matrix
		4	5	6]	

There are lots of things we can do to them:

Ex:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

Ex:
$$(-3) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -3 & -6 \\ -9 & -12 \end{bmatrix}$$

Ex: Transpose (= flipping matrix about its diagonal)

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

Ex:
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & c \end{bmatrix}^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 3 & 6 \end{bmatrix}$$

(rows become columns, and columns become rows)
Ex: $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
=> Symmetric matrix
Definition: A is symmetric if $A^{T} = A$
II- MATRIX MULTIPLICATION
More importantly, we can multiply two matrices. In order to
achieve this, recall:
Definition: Dot product:
 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 1x4 + 2x5 + 3x6 = 32$

Ex: Calculate AB, where:

$$A = M \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad B = N \begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 3 & 4 \end{bmatrix}$$

Note: Need # of columns of A = # of rows of B

(You don't actually need to check this; this is something you would notice anyway when calculating AB)

Then AB will be $m \times p$

Mnemonic:
$$(m \times f) \cdot (p \times p) = m \times p$$

 $A \qquad B \qquad AB$

Here: AB will be 2 x 2

Then matrix multiplication is just a bunch of dot products!

First: you take the first row of A and the first column of B to

dot it.

Then: you still take the <u>first</u> row of A, but this time the <u>second</u> column of B, and dot it.

Now since you ran out of columns, you move on to the <u>second</u> row of A (and the <u>first</u> column of B), and repeat!

It should remind you of FOIL-ing out an expression

Ex: Calculate AB and BA, where:

$$A = \begin{bmatrix} 101\\ 010\\ 101 \end{bmatrix}, B = \begin{bmatrix} 123\\ 456\\ 789 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 8 & 10 & 12 \\ 4 & 5 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$
$$BA = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 4 \\ 10 & 5 & 10 \\ 16 & 8 & 16 \end{bmatrix}$$

WARNING: In general AB = BA !!!

Also: $AB = AC \Rightarrow B = C!$

(Basically, matrices are weird)
Ex: Let
$$T \begin{bmatrix} x \\ 1 \\ z \end{bmatrix} = \begin{bmatrix} x - \gamma + 2z \\ x + \gamma - z \end{bmatrix}$$

Found: $A = \begin{bmatrix} 1 - 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$
Then: $A \begin{bmatrix} x \\ \frac{\gamma}{2} \end{bmatrix} = \begin{bmatrix} 1 - 1 & 2 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ \frac{\gamma}{2} \end{bmatrix}$
 $= \begin{bmatrix} x - \gamma + 2z \\ x + \gamma - 2 \end{bmatrix}$
 $= T \begin{bmatrix} x \\ \frac{\gamma}{2} \end{bmatrix}$
THIS is why T(x) = Ax
Ex: Identity matrix
 $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (2x2) \quad OR \begin{bmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 1 \end{bmatrix} (3x3)$
FACT: AI = IA = A for every A

Note: In chapter 5, we'll find an EASY way of calculating Aⁿ

IV- INTERPRETATION OF MATRIX MULTIPLICATION

Why is matrix multiplication so weird? It's in order for the following fact to hold:

Definition: If S and T are LT, then the composition TS (or ToS) is defined by:

TS(x) = T(S(x))

If you think of S and T as flights, then TS is a direct flight which brings you directly from x to T(S(x))

Fact: If the matrix of T is A and the matrix of S is B, then the matrix of TS is AB

V- THE INVERSE OF A MATRIX (Section 2.2)

Just as we defined AB, we can define 1/A, or A^{-1}

Definition: A^{-1} is the matrix B such that AB = BA = I, that is:

$$AA^{-1} = A^{-1}A = I$$

(Think: A(1/A) = (1/A) A = 1, analog of 1/x in the matrix world)

Definition: A is invertible if such a matrix B exists.

$= \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} $ (by above)
= [5]
-3
So if A ⁻¹ exists everything is gwesome which begs the
auestion: WHEN does A ⁻¹ exist? (which we'll answer next
time)