LECTURE 8: ENERGY METHODS

I- THE PLUCKED STRING (section 2.1)

Example 2: [The plucked string]
$u_{t+}=u_{x x}(c=1)$ with $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=0$, where:
$\phi(x)=\left\{\begin{array}{cl}0 & \text { for } x \leq-1 \\ 1-|x| & \text { for }-1<x<1 \\ 0 & \text { for } x \geqslant 1\end{array}\right.$

D'Alembert says:

$$
u(x, t)=1 / 2[\phi(x-t)+\phi(x+t)]
$$

Now given the piecewise definition of ϕ, this becomes quite complicated, and we need to split this up into a lot of cases.

Let me illustrate the case $t=1 / 2$:
$u(x, 1 / 2)=1 / 2[\phi(x-1 / 2)+\phi(x+1 / 2)]$

CASE 1: $x<-3 / 2$

Then $x-1 / 2<-2$ and $x+1 / 2<-1$

In that case $\phi(x-1 / 2)=0$ and $\phi(x+1 / 2)=0$, so
$u(x, 1 / 2)=1 / 2(0+0)=0$

CASE 2: $-3 / 2<x<-1 / 2$
Then $x-1 / 2<-1$ but $-1<x+1 / 2<0$

In that case $\phi(x-1 / 2)=0$ but
$\phi(x+1 / 2)=1-|x+1 / 2|=1-(-x-1 / 2)=3 / 2+x$
So $u(x, 1 / 2)=1 / 2(0+3 / 2+x)=3 / 4+x / 2$

CASE 3: $-1 / 2<x<1 / 2$
Then $-1<x-1 / 2<0$ but $0<x+1 / 2<1$

In that case:
$\phi(x-1 / 2)=1-|x-1 / 2|=1+x-1 / 2=x+1 / 2$
$\phi(x+1 / 2)=1-|x+1 / 2|=1-(x+1 / 2)=1 / 2-x$

But then

$$
u(x, 1 / 2)=1 / 2(x+1 / 2+1 / 2-x)=1 / 2(1)=1 / 2
$$

CASE 4: $1 / 2<x<3 / 2$

Then $0<x-1 / 2<1$ and $1<x+1 / 2<2$

$$
\begin{aligned}
& \phi(x-1 / 2)=1-|x-1 / 2|=1-(x-1 / 2)=3 / 2-x \\
& \phi(x+1 / 2)=0
\end{aligned}
$$

So $u(x, 1 / 2)=1 / 2(3 / 2-x)=3 / 4-x / 2$

CASE 5: $x>3 / 2$

Then $x-1 / 2>1$ and $x+1 / 2>2>1$, so
$\phi(x-1 / 2)=0$ and $\phi(x+1 / 2)=0$, and so $u(x, 1 / 2)=0$
Picture: $u(x, t)$ for various \dagger

$$
t=0 u(x, 0)=\phi(x)
$$

$t=1 / 2$ Discussed above

$$
t=1 \mathrm{HW}
$$

$$
t=2
$$

And so on and so forth!

This gives us a nice "movie" of the solution
II- THE ENERGY METHOD (Section 2.2)

Let's continue by discussing some more general properties of the wave equation.

Note: Everything below any solution of the wave equation. We are NOT using d'Alembert's formula here!

There are two main classes of PDE methods: Maximum Principle Methods (based on the maximum principle in 2.3) and Energy Methods (based on integration by parts).

Here, let me illustrate how the energy method works:

MAIN RESULT: [CONSERVATION OF ENERGY]

Suppose u solves $u_{t+}=u_{x x}$

Then the following energy $E(\dagger)$ is conserved:

$$
E(t)=1 / 2 \int_{-\infty}^{\infty}\left(u_{t}\right)^{2}+\left(u_{x}\right)^{2} d x
$$

Note: In physics, the first term is called the kinetic energy ($1 / 2 m v^{2}$) and the second part the potential energy, so this says that the total energy is conserved.

Method 1: Show $E^{\prime}(t)=0$

Could go that route, and it's in fact easier, but it requires you beforehand to know what E is!

Method 2: Energy Method
Start with:

$$
u_{t t}=u_{x x}
$$

Multiply both sides by u_{+}

$$
u_{t+} u_{t}=u_{x x} u_{t}
$$

Now integrate with respect to x :

STUDY OF A:
Note that from calculus: $\quad y^{\prime \prime} y^{\prime}=\frac{1}{2}\left[\left(y^{\prime}\right)^{2}\right]^{\prime}$

Hence: $u_{t+} u_{t}=\frac{1}{2} \frac{d}{d t}\left(u_{t}\right)^{2}$
In particular:

$$
\begin{aligned}
A= & \int_{-\infty}^{\infty} \frac{1}{2} \frac{d}{d t}(U t)^{2} d x \\
& =\frac{1}{2} \frac{d}{d t} \int_{-\infty}^{\infty}(U t)^{2} d x
\end{aligned}
$$

STUDY OF B:

Here we integrate by parts with respect to x

Note:

1) Integration by parts: $\quad \int f^{\prime} g=f g-\int f g^{\prime}$
2) Here we assume the fo term is 0 (which basically means that our waves are 0 at $x=+/$ - infinity, which makes sense in practice)
3) $y y^{\prime}=1 / 2\left(y^{2}\right)^{\prime}$

$$
\begin{aligned}
\int_{-\infty}^{\infty} U_{x}\left(\underset{x}{ } U_{t} d x\right. & =-\int_{-\infty}^{I B P} U_{x} U_{x t} d x \\
& =-\int_{-\infty}^{\infty} \frac{1}{2} \frac{d}{d t}\left(U_{x}\right)^{2} d x \\
& =-\frac{1}{2} \frac{d}{d t} \int_{-\infty}^{\infty}\left(U_{x}\right)^{2} d x
\end{aligned}
$$

$A=B$ then implies:

$$
\frac{1}{2} \frac{d}{-11} \int^{\infty}\left(U_{t}\right)^{2}=-\frac{1}{2} \frac{d}{1+} \int^{\infty}\left(U_{x}\right)^{2} d x
$$

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{-\infty}\left(U_{t}\right)=-\frac{1}{2} \frac{d}{d t} \int_{-\infty}\left(U_{x}\right)^{-\infty} d x \\
& \frac{d}{d t}\left[\frac{1}{2} \int_{-\infty}^{\infty}\left(U_{t}\right)^{2}+\left(U_{x}\right)^{2} d x\right]=0
\end{aligned} \underbrace{}_{E(t)}=0
$$

Therefore $E(t)$ is constant!
Remarks:

1) In particular $E(t)=E(0)$ and $E(0)$ only depends on our initial conditions ϕ and ψ
2) Application: Uniqueness of Solutions

Suppose u and v both solve the wave equation
Let $w=u-v$, then w also solves the wave equation (check) but with $\phi=0$ and $\psi=0$ (check)

Then, by \# 1 in 2.2 (on HW), get $w=0$, so $u-v=0$ so $u=v$

