LECTURE 8: ENERGY METHODS
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L= THEPLUCKED STRING (section 2.1)

Example 2: [The plucked string]

Utt = Uxx (€ = 1) with u(x,0) = ¢(x) and u+(x,0) = O, where:

O forxg-1
d(x) = 1-]|x| for-1<x<1

O forx>l1

PN

D'Alembert says:
u(x,t) = 1/2 [ d(x-t) + d(x+1) ]

Now given the piecewise definition of ¢, this becomes quite
complicated, and we need to split this up into a lot of cases.

Let me illustrate the case t = 1/2:




u(x,1/2) = 1/2 [¢(x-1/2) + p(x+1/2)]

x < -3/2
Thenx-1/2<-2and x +1/2 < -1
In that case ¢(x-1/2) = 0 and ¢p(x+1/2) = 0, so

u(x,1/2)=1/2(0+0)=0

:=-3/2 < x < -1/2
Thenx-1/2<-1but-1<x+1/2<0
In that case ¢(x-1/2) = O but
d(x+1/2) =1 - |x+1/2| =1-(-x-1/2) = 3/2 + x

Sou(x,1/2)=1/2(0+3/2 + x)=3/4 + x/2

-1/2 < x < 1/2
Then-1<x-1/2<0butO0<x+1/2<1
In that case:
o(x-1/2)=1-|x-1/2| =1+x-1/2=x+1/2

O(x+1/2) =1 - |x+1/2| =1 -(x+1/2)=1/2 - x



But then

u(x1/2)=1/2 (x + 1/2 + 1/2 - x) = 1/2 (1) = 1/2

1/2 < x < 3/2
ThenO<x-1/2<1land1<x+1/2<2

o(x-1/2) =1 -|x-1/2| = 1-(x-1/2) = 3/2 - x
d(x+1/2) =0

Sou(x,1/2)=1/2 (3/2-x)=3/4-x/2

x > 3/2
Thenx-1/2>1and x+1/2>2>1, so
®(x-1/2) = 0 and ¢p(x+1/2) = 0, and so u(x,1/2) = 0
Picture: u(x,t) for various t

t = 0 u(x,0)= ¢(x)
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+ = 1/2 Discussed above
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And so on and so forth!

This gives us a nice "movie" of the solution

IT- THE ENERGY METHOD (Section 2.2)

Let's continue by discussing some more general properties of
the wave equation.

Note: Everything below any solution of the wave equation. We
are NOT using d'Alembert's formula here!

There are two main classes of PDE methods: Maximum
Principle Methods (based on the maximum principle in 2.3) and

Energy Methods (based on integration by parts).

Here, let me illustrate how the energy method works:




MATIN RESULT: [CONSERVATION OF ENERGY]

Suppose u solves Ut = Uxx

Then the following energy E(t) is conserved:
9

E() = 1/2 / ()? + (U)? dx

-

Note: In physics, the first term is called the kinetic energy
(1/2 m v2) and the second part the potential energy, so this
says that the total energy is conserved.

Method 1: Show E'(1) =0

Could go that route, and it's in fact easier, but it requires you
beforehand to know what E is!

Method 2: Energy Method

Start with:
U+t = Uxx
Multiply both sides by us

Ut Ut = Uxx Ut




Now integrate with respect to x:

od L9
/ Uit U dx = / Uxx Ut dX
—od

STUDY OF A:
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STUDY OF B:



Here we integrate by parts with respect o x
Note:

1) Integration by parts: jf'g =fg - Jfg'

2) Here we assume the fg term is O (which basically means
that our waves are O at x = +/- infinity, which makes sense
in practice)

3) yy' =1/2 (y®)
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A = B then implies:
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1 d J Ly =L 4 4 / (Uy) dX
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Therefore E(t) is constant!
Remarks:

1) In particular E(t) = E(O) and E(O) only depends on our
initial conditions ¢ and v

2) Application: Uniqueness of solutions
Suppose u and v both solve the wave equation

Let w = u-v, then w also solves the wave equation (check)
but with ¢ = 0 and v = O (check)

Then, by #1in 2.2 (on HW),get w=0,s0u-v=0sou=v



