MIDTERM SOLUTIONS
Sunday, October 27, 2019 2:03 PM

PROBLEM 1

$$
y^{2} x u_{x}+x^{3} y u_{y}=0
$$

1) $\frac{d y}{d x}=$ Slope $=\frac{x^{3} y}{y^{2} x}=\frac{x^{2}}{y}$
2) $y d y=x^{2} d x$

$$
\begin{aligned}
& y d y=x^{2} d x \\
& 1 / 2 y^{2}=1 / 3 x^{3}+C \\
& \underbrace{1 / 2 y^{2}-1 / 3}_{?} x^{3}=C
\end{aligned}
$$

3) $u(x, y)=f(?)$

$$
u(x, y)=f\left(1 / 2 y^{2}-1 / 3 x^{3}\right)
$$

PROBLEM 2

$$
u(x, t)=F(4 x+t)+G(x-t)
$$

$$
\begin{aligned}
& \text { 1) } u(x, 0)=F(4 x+0)+G(x-0)=F(4 x)+G(x)=e^{x} \\
& F(4 x)+G(x)=e^{x}
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
& u_{+}(x, t)=(F(4 x+t)+G(x-t))_{+} \\
&=F^{\prime}(4 x+t)-G^{\prime}(x-t) \\
& u_{+}(x, 0)=F^{\prime}(4 x+0)-G^{\prime}(x-0)=F^{\prime}(4 x)-G^{\prime}(x)=\cos (x) \\
& F^{\prime}(4 x)-G^{\prime}(x)=\cos (x) \\
& \int F^{\prime}(4 s)-G^{\prime}(s) d s=\int \cos (s) d s \\
& 1 / 4 F(4 x)-G(x)=\sin (x)+C
\end{aligned}
$$

(Careful: An antiderivative of $F^{\prime}(4 s)$ with respect to s is NOT F(4s), but $1 / 4 F(4 s)$. Here don't confuse $F^{\prime}(4 s)$ with $(F(4 s))$ ')
3) Hence we have:

$$
\begin{aligned}
& F(4 x)+G(x)=e^{x} \\
& 1 / 4 F(4 x)-G(x)=\sin (x)+C
\end{aligned}
$$

Add both equations:
$5 / 4 F(4 x)=e^{x}+\sin (x)+C$

$$
F(4 x)=4 / 5 e^{x}+4 / 5 \sin (x)+4 / 5 C
$$

In particular (replacing $4 x$ with x, so dividing every input by 4)

$$
F(x)=4 / 5 e^{x / 4}+4 / 5 \sin (x / 4)+4 / 5 C
$$

Subtract 4 times the second equation from the first one:

$$
\begin{aligned}
& 5 G(x)=e^{x}-4 \sin (x)-4 C \\
& G(x)=1 / 5 e^{x}-4 / 5 \sin (x)-4 / 5 C
\end{aligned}
$$

4) Finally:

$$
\begin{aligned}
u(x, t)= & F(4 x+t)+G(x-t) \\
= & 4 / 5 e^{(4 x+t) / 4}+4 / 5 \sin ((4 x+t) / 4)+4 / 5 C \\
& +1 / 5 e^{x-t}-4 / 5 \sin (x-t)-4 / 5 C \\
u(x, t)= & 4 / 5 e^{(4 x+t) / 4}+1 / 5 e^{x-t}+4 / 5 \sin ((4 x+t) / 4)-4 / 5 \sin (x-t)
\end{aligned}
$$

(No need to simplify this)

PROBLEM 3

1) Let $w=u-v$

Then $w_{t}=(u-v)_{t}=u_{t}-v_{+}=k u_{x x}-k v_{x x}=k(u-v)_{x x}=k w_{x x}$
So w also solves the heat equation
2) By the Maximum principle, max w is the larger one of

$$
\max w(x, 0), \max w(0, t), \max w(1, t)
$$

But $w(x, 0)=u(x, 0)-v(x-0) \leq 0$ (by assumption), so max $w(x, 0) \leq 0$
And similarly max $w(0, t) \leq 0$ and $\max w(1, t) \leq 0$
Therefore, the larger one of those 3 must still be ≤ 0

So $\max w \leq 0$
3) So $w(x, t) \leq 0$ for all x and t

So $u-v \leq 0$
Hence $u \leq v$

PROBLEM 4

1) Multiply both sides of the PDE by u:

$$
u_{t} u=k u_{x x} u-u^{3} u
$$

And integrate with respect to \times from 0 to I :

$$
\int_{0}^{l} u_{+} u d x=k \int_{0}^{l} u_{x x} u d x-\int_{0}^{l} u^{4} d x
$$

2) Since $u_{t} u=1 / 2 d / d t\left(u^{2}\right)$, the first term just becomes
$1 / 2 \int_{0}^{l} d / d t u^{2} d x=d / d t 1 / 2 \int_{0}^{l} u^{2} d x$
3) Integrating the second term by parts, we get

$$
\begin{aligned}
u_{x x} u d x & =u_{x}(1, t) u(1, t)-u_{x}(0, t) u(0, t)-\int_{0}^{l} u_{x} u_{x} d x \\
& =u_{x}(1, t) u(1, t)-u_{x}(1, t) u(1, t)-\int_{0}^{l}\left(u_{x}\right)^{2} d x \quad \text { (by assumption) } \\
& =-\int_{0}^{l}\left(u_{x}\right)^{2} d x
\end{aligned}
$$

$d / d+1 / 2 \int_{0}^{l} u^{2} d x=-k \int_{0}^{l}\left(u_{x}\right)^{2} d x-\int_{0}^{l} u^{4} d x \leq 0$
$E^{\prime}(\dagger) \leq 0$
4) Hence the energy $E(t)=1 / 2 \int_{0}^{\ell} u^{2}(x, t) d x$ is decreasing, so $E(t) \leq E(0)$
$(0 \leq) 1 / 2 \int_{0}^{l} u^{2}(x, t) d x \leq 1 / 2 \int_{0}^{l} u^{2}(x, 0) d x=0$ (by assumption)
Hence $1 / 2 \int_{0}^{l} \underbrace{u^{2}(x, t)}_{\geqslant 0} d x=0$
So $u^{2}(x, t)=0$, so $u(x, t)=0$, as we wanted to show.

