MOCK MIDTERM SOLUTIONS

PROBLEM 1:

1) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin (x)}{\cos (y)}=$ Slope

$$
\Leftrightarrow \quad \int \cos (y) \mathrm{d} y=\int \sin (x) \mathrm{d} x
$$

$$
\begin{aligned}
& \Leftrightarrow \quad \sin (y)=-\cos (x)+C \\
& \Longleftrightarrow \quad \underbrace{\cos (x)+\sin (y)}_{?}=C
\end{aligned}
$$

2)

General solution

$$
\begin{aligned}
& u(x, y)=f(?)=f(\cos (x)+\sin (y)) \\
& u(x, y)=f \quad c(\operatorname{ss}(x)+\sin (y))
\end{aligned}
$$

3)

$$
\begin{aligned}
& \text { Initial Condition } \\
& \underbrace{u(x, 0)}_{(\cos (x))^{2}=f(\cos (x))}=f(\cos (x)+\sin (0))
\end{aligned}
$$

Hence: $\quad f(\cos (x))=(\cos (x))^{2}$

So: $f(x)=x^{2}$
4) Conclusion:

$$
u(x, y)=\kappa((\operatorname{si}(x)+\sin (y))
$$

$$
u(x, y)=(\quad \cos (x)+\sin (y) \quad)^{2}
$$

PROBLEM 2:

1) Note: $x^{2}+x t-2 t^{2}=(x+2 t)(x-t)$
2) Hence $u_{x x}+u_{x t}-2 u_{t+}$

$$
\begin{aligned}
& =\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial x \partial t}-2 \frac{\partial^{2}}{\partial t^{2}}\right) u \\
& =\left(\frac{\partial}{\partial x}+2 \frac{\partial}{\partial t}\right) \underbrace{\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial t}\right) u}_{\boldsymbol{V}} \\
& =\left(\frac{\partial}{\partial x}+2 \frac{\partial}{\partial t}\right) v
\end{aligned}
$$

$$
=\sim \underbrace{v_{x}+2 v_{t}=0}
$$

2) But $\quad v_{x}+2 v_{t}=0 \quad(a=1, b=2)$

$$
\Rightarrow v(x, t)=f(2 x-t) \quad(b x-a y)
$$

3) Now use $v=\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial t}\right)^{\text {a }} u$

$$
\Rightarrow u_{x}-u_{t}=v=f(2 x-t)
$$

4) To solve this, first solve the homogeneous PDE

$$
\begin{gathered}
u_{x}-u_{t}=0 \quad(a=1, b=-1) \\
\Rightarrow u(x, t)=G(x+t) \quad(a y-b x ; \text { could also have used } a x-b y)
\end{gathered}
$$

Now find a particular solution of $u_{x}-u_{t}=f(2 x-t)$

Guess: $u(x, t)=a F(2 x-t)$, then:

$$
\begin{array}{ll}
& u_{x}-u_{t}=f(2 x-t) \\
\Rightarrow & (a F(2 x-t))_{x}-(a F(2 x-t))_{+}=f(2 x-t) \\
\Rightarrow & a F^{\prime}(2 x-t)(2)-a F^{\prime}(2 x-t)(-1)=f(2 x-t) \\
\Rightarrow & 2 a f(2 x-t)+a f(2 x-t)=f(2 x-t) \\
\Rightarrow & 3 a f(2 x-t)=f(2 x-t) \\
\Rightarrow & 3 a=1 \\
\Rightarrow & a=1 / 3
\end{array}
$$

Hence a particular solution is $u(x, t)=(1 / 3) F(2 x-t)=F(2 x-t)$ (since F is arbitrary)
5) General Solution: $u(x, t)=G(x+t)+F(2 x-t)$
(Hor. Sol) (Particular sol)

$$
u(x, t)=F(2 x-t)+G(x+t) \quad(F, G \text { arbitrary })
$$

PROBLEM 3:

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
u(x, t) & =\mathrm{S}(x, t) * \phi(x) \\
K=\frac{1}{4} & =\int_{-\infty}^{\infty} S(x-y, t) \phi(y) \mathrm{d} y \\
& =\frac{1}{\sqrt{4 \pi /\left(\frac{1}{4}\right)} t} \int_{-\infty}^{\infty} \mathrm{e} \frac{-(x-y)^{2}}{4\left(\frac{1}{4}\right) t} \mathrm{e}^{2 y} \mathrm{~d} y \\
= & \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{(x-y)^{2}}{t}+2 y} \mathrm{~d} y
\end{aligned}
\end{aligned}
$$

2) Complete the square in the exponent:

$$
\begin{aligned}
& \frac{-(x-y)^{2}}{t}+2 y \\
& =-\frac{1}{t}\left[y^{2}-2(x+t) y+x^{2}\right] \\
& =\quad-\frac{1}{t}\left[(y-(x+t))^{2}-(x+t)^{2}+x^{2}\right] \\
& =-\frac{1}{t}\left[(\quad y-(x+t))^{2}-x^{2}-2 \mathrm{x} t-t^{2}+x^{2}\right] \\
& =\left(-\frac{(y-(x+\mathrm{t}))^{2}}{t}\right)+2 x+t \\
& \text { 3) Hence } \\
& u(x, t)=\frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{(y-(x+t))^{2}}{t}} \mathrm{e}^{2 x+t} d y \\
& =\frac{\mathrm{e}^{2 \mathrm{x}+\mathrm{t}}}{\sqrt{\pi t}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\frac{y-(x+\mathrm{t})}{\sqrt{t}}\right)^{2} \mathrm{~d} y} \\
& p=\frac{y-(x+\mathrm{t})}{\sqrt{t}} \downharpoonleft \\
& =\frac{\mathrm{e}^{2 x+t}}{\sqrt{\vec{x}} \sqrt{t}} \underbrace{\int_{-\infty}^{\infty} \mathrm{e}^{-y^{2}} \sqrt{t} \mathrm{~d} y}_{\text {低 }}
\end{aligned}
$$

PROBLEM 4:

1) Let u and v be two solutions and let $w=u-v$

$$
\begin{aligned}
& \text { Then } w_{t \dagger}=(u-v)_{t \dagger}=u_{t \dagger}-v_{t \dagger} \\
& =c^{2} u_{x x}+f-\left(c^{2} v_{x x}+f\right) \\
& =c^{2} u_{x x}+f-c^{2} v_{x x}-f \\
& =c^{2}\left(u_{x x}-v_{x x}\right) \\
& =c^{2}(u-v)_{x x} \\
& =c^{2} w_{x x}
\end{aligned}
$$

So w solves $w_{t+}=c^{2} w_{x x}$

Moreover $w(0, t)=u(0, t)-v(0, t)=g(t)-g(t)=0$
And similarly for the other boundary/initial conditions

Therefore w solves the following PDE:

$$
\left\{\begin{array}{l}
w_{t+}=c^{2} w_{x x} \\
w(0, t)=0 \\
w(1, t)=0 \\
w(x, 0)=0 \\
w_{+}(x, 0)=0
\end{array}\right.
$$

2) Now take this PDE and multiply it by w_{+}
(this is why I didn't say u_{+}but a variation of u_{+})

$$
W_{t+} W_{+}=c^{2} w_{x x} W_{+}
$$

And integrate with respect to \times from 0 to 1

$$
\int_{0}^{l} w_{t+} w_{t} d x=c^{2} \int_{0}^{l} w_{x x} w_{+} d x
$$

3) Since $w_{t+} w_{t}=1 / 2 d / d t\left(w_{t}\right)^{2}$ the left hand side becomes:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{l}\left(w_{t}\right)^{2} \mathrm{~d} x
$$

4) For the right-hand-side, integrate by parts with x to get
$\int_{0}^{l} w_{x x} w_{t} d x=w_{x}(1, t) w_{+}(1, t, t)^{0}-w_{x}(0, t) w_{+}(0, t)-\int_{0}^{0} w_{x} w_{x+} d x$

Note that $w_{+}(1, t)=d / d t(w(1, t))=d / d t(0)=0$
And similarly $w_{+}(0, t)=0$, so the boundary terms are 0
Moreover $w_{x} w_{x t}=d / d t\left(w_{x}\right)^{2}$ so the right hand side ultimately becomes

$$
-\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{l}\left(w_{x}\right)^{2} \mathrm{~d} x
$$

5) Finally, equating both sides we get:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{l}\left(w_{t}\right)^{2} \mathrm{~d} x=-c^{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{0}^{l}\left(w_{x}\right)^{2} \mathrm{~d} x \\
& \Rightarrow \frac{d}{d t}[\underbrace{\left.\int_{0}^{l}\left(w_{t}\right)^{2}+c^{2}\left(w_{x}\right)^{2} \mathrm{~d} x\right]}_{\mathrm{E}(\mathrm{t})}=0 \\
& \Rightarrow E^{\prime}(t)=0
\end{aligned}
$$

In other words, the energy is constant, so in particular

$$
E(t)=E(0)
$$

But $E(0)=$

(since $\left.w_{x}(x, 0)=(w(x, 0))_{x}=(0)_{x}=0\right)$

So $E(0)=0$
And in particular $\mathrm{E}(\mathrm{t})=\underbrace{\int^{l}\left(w_{t}\right)^{2}+c^{2}\left(w_{x}\right)^{2} \mathrm{~d} x}=\mathrm{E}(0)=0$

But this implies $\left(w_{+}\right)^{2}+c^{2}\left(w_{x}\right)^{2}=0$ and hence $w_{+}=0$ and $w_{x}=0$
But then this means $w(x, t)=C$ where C is a constant

And in particular $w(x, 0)=C$, but $w(x, 0)=0$, so $C=0$
Hence $w=0$, so $u-v=0$, so $u=v$

