LECTURE 16: HALF HEAT EQUATION

Today: Want to solve the heat equation on the half-line (semi-infinite rod), but first let me "remind" you of a long-forgotten calculus concept:

I- EVEN AND ODD FUNCTIONS

A) DEFINITION

1) f is even if $f(-x)=f(x)$

Ex: $f(x)=x^{2}$

Even functions are symmetric about the y-axis
2) f is odd if $f(-x)=-f(x)$

Ex: $f(x)=x^{3}$

Odd functions are symmetric about the origin
B) IMPORTANT FACTS

1) If f is odd, then $\int_{-\infty}^{\infty} f(x) d x=0$

2) If f is even, then f^{\prime} is odd
3) $($ Even $) \times($ Odd $)=O d d$
4) If f is odd, then $f(0)=0$
C) EVENIFICATION AND ODDIFICATION

Suppose now $f(x)$ is only defined only on $(0, \infty)$

Is there some nice way to extend f to all of R ?

Yes! In fact two of them!
(i) EVENIFICATION (Even extension)

$$
f_{\text {even }}(x)=\left\{\begin{array}{l}
f(x) \text { if } x \geqslant 0 \\
f(-x) \text { if } x \leqslant 0
\end{array}\right.
$$

($f(0)$ defined by continuity)
Geometrically: You reflect the graph of f about the y-axis

Fact: $f_{\text {even }}$ is even, and $f_{\text {even }}(x)=f(x)$ if $x \geq 0$ (so in fact it is an even extension of f)
(ii) ODDIFICATION (Odd Extension)

$$
f_{\text {odd }}(x)=\left\{\begin{array}{l}
f(x) \text { if } x>0 \\
0 \\
\text { if } x=0 \\
-f(-x) \text { if } x<0
\end{array}\right.
$$

Geometrically: You reflect f about the origin

Fact: $f_{\text {odd }}$ is odd and $f_{\text {odd }}(x)=f(x)$ if $x>0$
(so in fact an odd extension)

Example: If $f(x)=e^{x}$, then:
Then $f_{\text {even }}(x)=\left\{\begin{array}{l}e^{x} \text { on }[0, \infty) \\ e^{-x} \text { on }(-\infty, 0]\end{array}\right.$

$$
f_{\text {odd }}(x)=\left\{\begin{array}{r}
e^{x} \text { if } x>0 \\
0 \text { if } x=0 \\
-e^{-x} \text { if } x<0
\end{array}\right.
$$

But what does this have to do with PDE ?????

II- HALF HEAT EQUATION

Setting:

Suppose this time you only have a half-infinite $\operatorname{rod} x>0$ and you insulate it on the left to have temperature 0 at all times.

Picture:

$$
u(0, t)=0
$$

Picture:

Then you get the following half heat equation (= heat equation on half-line)

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \\
u(x, 0)=\phi(x) \\
u(0, t)=0
\end{array}\right.
$$

$$
(x>0)
$$

$$
\text { (} x>0 \text {; Initial condition) }
$$

(Boundary condition)

Warning: Here $u(x, t)$ and $\phi(x)$ are only defined for $x>0$

It would be nice if we could somehow turn this into a problem on the whole line $-\infty<x<\infty$ because we know how to solve the latter! And indeed we can by using oddification!

STEP 1: Define
$\phi_{\text {odd }}(x)=\left\{\begin{array}{cl}\phi(x) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ \phi(-x) & \text { if } x<0\end{array}\right.$

And solve

$$
\begin{cases}u_{+}=k u_{x x} & (-\infty<x<\infty) \\ u(x, 0)=\phi_{\text {odd }}(x) & \end{cases}
$$

(So heat equation on the whole line, but with initial data $\phi_{\text {odd }}$)

Note: Why use oddification? Intuitively, it's because we want $u(0, t)=0$, and in general if f is odd, we have $f(0)=0$, so those two might seem related!

STEP 2:

$$
\Rightarrow u(x, t)=S(x, t) * \phi_{o d d}(x)=\int_{-\infty}^{\infty} S(x-y, t) \phi_{o d d}(y) d y
$$

Claim: $u(x, t)$ solves our original problem on the half-line $x>0$

Why?

1) u still solves $u_{t}=k u_{x x}$ for $x>0$
2) Moreover, if $x>0$, then $u(x, 0)=\phi_{\text {odd }}(x)=\phi(x)$ (by definition of $\phi_{\text {odd }}$ and since $x>0$ here)
3) Finally

$$
\begin{aligned}
u(0, t) & =\int_{-\infty}^{\infty} S(0-y, t) \phi_{o d d}(y) d y \quad(\text { set } x=0) \\
& =\int_{-\infty}^{\infty} S(-y, t) \phi_{o d d}(y) d y \\
& =\int_{-\infty}^{\infty} \underbrace{\infty}_{\underbrace{\text { Even }}(y, t)} \underbrace{}_{\text {Odd }}(y) d y \text { (Since } S(y, t)=\underbrace{}_{\sqrt{\sqrt{4 \pi k t}}} e^{\frac{-y^{2}}{4 k t}} \text { is even in } y) \\
& =\int_{-\infty}^{\infty} O D \\
& =0
\end{aligned}
$$

So using oddification, we basically get $u(0, t)=0$ for free!
STEP 4: Explicit formula without $\phi_{o d d}$
What does this look like explicitly??
Recall $\phi_{\text {odd }}(y)= \begin{cases}\phi(y) & \text { if } y>0 \\ -\phi(-y) & \text { if } y<0\end{cases}$

$$
\begin{aligned}
u(x, t) & =\int_{-\infty}^{\infty} S(x-y, t) \phi_{o d d}(y) d y \\
& =\int_{-\infty}^{0} S(x-y, t) \phi_{o d d}(y) d y+\int_{0}^{\infty} S(x-y, t) \phi_{o d d}(y) d y \\
& =\int_{-\infty}^{\infty} S(x-y, t)(-\phi(-y)) d y+\int_{0}^{\infty} S(x-y, t) \phi(y) d y
\end{aligned}
$$

(u-sub: $p=-y, d p=-d y=d y=-d p, p(-\infty)=\infty, p(0)=0)$

$$
\begin{aligned}
& =\int_{\infty}^{0} s(x+p, t) \phi(p) d p+\int_{0}^{\infty} s(x-y, t) \phi(y) d y \\
& =-\int_{0}^{\infty} s(x+y, t) \phi(y) d y+\int_{0}^{\infty} s(x-y, t) \phi(y) d y
\end{aligned}
$$

(u-sub: $y=p$, and we reversed the order of integration)
STEP 5: Conclusion

$$
u(x, t)=\int_{0}^{\infty}(S(x-y, t)-S(x+y, t)) \phi(y) d y
$$

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left[\mathrm{e}^{\frac{-(x-y)^{2}}{4 k t}}-\mathrm{e}^{-\frac{(x+y)^{2}}{4 k t}}\right] \phi(y) \mathrm{d} y
$$

(Notice the integral is from 0 to infinity!
Also don't memorize it, but know how to derive it)

Example: Solve

$$
\left\{\begin{aligned}
& \begin{array}{rl}
u_{t}=k u_{x x} & (x>0) \\
u(0, t)=0 & \\
u(x, 0)=1
\end{array} \\
& \begin{array}{rl}
\phi(x)=1 & \phi(y) \\
u(x, t) & =\int_{0}^{\infty}[S(x-y, t)-S(x+y, t)] 1 \\
\infty & d y \\
& =\int_{0}^{\infty} S(y-x, t) d y-\int_{0}^{\infty} S(x+y, t) d y
\end{array}
\end{aligned}\right.
$$

(S is even, so $S(x-y, t)=S(-(x-y), t)=S(y-x, t)$)

$$
=\int_{-x}^{\infty} S(p, t) d p-\int_{x}^{\infty} S(q, t) d q
$$

$$
\begin{aligned}
& (p=y-x, d p=d y, p(0)=-x, p(\infty)=\infty-x=\infty) \\
& (q=x+y, d q=d y, q(0)=x, q(\infty)=x+\infty=\infty) \\
& \quad \infty \\
& \quad \int_{-x} S(y, t) d y+\int_{\infty}^{x} S(y, t) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-x}^{x} S(y, t) d y \\
& =2 \int_{0}^{x} S(y, t) d y \text { (because } S \text { is even) } \\
& =\frac{Z}{\sqrt{y k k t}} \int_{0}^{\mathrm{x}}\left[\mathrm{e}^{\frac{-y^{2}}{4 k t}}\right] \mathrm{d} y \quad \int_{\mathrm{p}=\mathrm{y} /(4 \mathrm{kt})^{1 / 2}} \\
& d p=d y /(4 k t)^{1 / 2} \\
& =\frac{\sqrt{4 k t}}{\sqrt{\pi k t}} \int_{0}^{\frac{\mathrm{x}}{\sqrt{4 k t}}}\left[\mathrm{e}^{-p^{2}}\right] \mathrm{d} p \\
& u(x, t)=\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{\mathrm{x}}{\sqrt{4 k t}}}\left[\mathrm{e}^{-p^{2}}\right] \mathrm{d} p
\end{aligned}
$$

(as explicit as we can get; sometimes called "Error function", $u(x, t)$ is multiple of area under bell curve)

Interpretation: Notice:

$$
\begin{aligned}
& \mathrm{u}(0, \mathrm{t})=\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{0}{\sqrt{4 k t}}}\left[\mathrm{e}^{-p^{2}}\right] \mathrm{d} p=0 \\
& \mathrm{u}(\infty, \mathrm{t})=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty}\left[\mathrm{e}^{-p^{2}}\right] \mathrm{d} p=1
\end{aligned}
$$

So if $t>0$ is fixed, $u(x, t)$ increases from 0 (where it's insulated) to 1:

Picture: † fixed

As t increases, we still have the same phenomenon, but The graph of u gets stretched horizontally

