LECTURE 16: HALF HEAT EQUATION

Thursday, October 31, 2019 2:02 PM

Today: Want to solve the heat equation on the half-line (semi-infinite rod), but first let me "remind" you of a long-forgotten calculus concept:

I- EVEN AND ODD FUNCTIONS

- A) DEFINITION
- 1) f is even if f(-x) = f(x)

Ex:
$$f(x) = x^2$$

Even functions are symmetric about the y-axis

2) f is odd if f(-x) = -f(x)

Ex: $f(x) = x^3$

Odd functions are symmetric about the origin

B) <mark>IMPORTANT FACTS</mark>

1) If f is odd, then
$$\int_{-\infty}^{\infty} f(x)dx = 0$$

- 2) If f is even, then f' is odd
- 3) (Even) \times (Odd) = Odd
- 4) If f is odd, then f(0) = 0
- C) EVENIFICATION AND ODDIFICATION

Suppose now f(x) is only defined only on $(0,\infty)$

Is there some nice way to extend f to all of R?

Yes! In fact two of them!

(i) EVENIFICATION (Even extension)

$$f_{even}(x) = \begin{cases} f(x) & \text{if } x > 0 \\ f(-x) & \text{if } x \leq 0 \end{cases}$$

(f(0) defined by continuity)

Geometrically: You reflect the graph of f about the y-axis

Fact: f_{even} is even, and $f_{even}(x) = f(x)$ if $x \ge 0$ (so in fact it is an even extension of f)

(ii) ODDIFICATION (Odd Extension)

$$f_{odd}(x) = \begin{cases} f(x) \text{ if } x > 0 \\ 0 \text{ if } x = 0 \\ -f(-x) \text{ if } x < 0 \end{cases}$$

Geometrically: You reflect f about the origin

Fact: f_{odd} is odd and $f_{odd}(x) = f(x)$ if x > 0 (so in fact an odd extension)

Example: If $f(x) = e^x$, then:

Then
$$f_{even}(x) = \begin{cases} e^x \text{ on } [0, \infty) \\ e^{-x} \text{ on } (-\infty, 0] \end{cases}$$

$$f_{odd}(x) = \begin{cases} e^{x} \text{ if } x > 0 \\ 0 \text{ if } x = 0 \\ -e^{-x} \text{ if } x < 0 \end{cases}$$

But what does this have to do with PDE ?????

II- HALF HEAT EQUATION

Setting:

Suppose this time you only have a half-infinite rod x > 0 and you insulate it on the left to have temperature 0 at all times.

Picture: V(0,t) = 0

Picture:

$$\begin{array}{c}
U(o,t) = 0 \\
U(x,t) \\
\end{array}$$

Then you get the following half heat equation (= heat equation on half-line)

$$\begin{cases} u_t = k \ u_{xx} \\ u(x,0) = \phi(x) \\ u(0,t) = 0 \end{cases}$$

$$\begin{cases} u_t = k \ u_{xx} & (x > 0) \\ u(x,0) = \phi(x) & (x > 0; \text{ Initial condition)} \\ u(0,t) = 0 & (\text{Boundary condition}) \end{cases}$$

Warning: Here u(x,t) and $\phi(x)$ are only defined for x > 0

It would be nice if we could somehow turn this into a problem on the whole line $-\infty < x < \infty$ because we know how to solve the latter! And indeed we can by using oddification!

STEP 1: Define

$$\phi_{\text{odd}}(x) = \begin{cases} \phi(x) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ \phi(-x) & \text{if } x < 0 \end{cases}$$

And solve

$$u_{t} = k u_{xx} \qquad (-\infty < x < \infty)$$

$$u(x,0) = \phi_{odd}(x)$$

(So heat equation on the whole line, but with initial data ϕ_{odd})

Note: Why use oddification? Intuitively, it's because we want u(0,t) = 0, and in general if f is odd, we have f(0) = 0, so those two might seem related!

STEP 2:

$$=> u(x,t) = S(x,t) * \phi_{odd}(x) = \int_{-\infty}^{\infty} S(x-y,t) \phi_{odd}(y) dy$$

Claim: u(x,t) solves our original problem on the half-line x > 0

Why?

1) u still solves $u_t = k u_{xx}$ for x > 0

- 2) Moreover, if x > 0, then $u(x,0) = \phi_{odd}(x) = \phi(x)$ (by definition of ϕ_{odd} and since x > 0 here)
- 3) Finally

$$u(0,t) = \int_{-\infty}^{\infty} S(0-y,t) \phi_{odd}(y) dy \quad (set x = 0)$$

$$= \int_{-\infty}^{\infty} S(-y,t) \phi_{odd}(y) dy$$

$$= \int_{-\infty}^{\infty} S(y,t) \phi_{odd}(y) dy \quad (Since S(y,t) = \frac{1}{\sqrt{4\pi kt}} e^{\frac{-y^2}{4kt}} is even in y)$$
Even Odd
$$Odd$$

$$= \int_{-\infty}^{\infty} ODD$$

So using oddification, we basically get u(0,t) = 0 for free!

STEP 4: Explicit formula without ϕ_{odd}

What does this look like explicitly??

Recall
$$\phi_{\text{odd}}(y) = \begin{cases} \phi(y) & \text{if } y > 0 \\ -\phi(-y) & \text{if } y < 0 \end{cases}$$

$$u(x,t) = \int_{-\infty}^{\infty} S(x-y,t) \, \phi_{odd}(y) \, dy$$

$$= \int_{-\infty}^{\infty} S(x-y,t) \, \phi_{odd}(y) \, dy + \int_{-\infty}^{\infty} S(x-y,t) \, \phi_{odd}(y) \, dy$$

$$= \int_{-\infty}^{\infty} S(x-y,t) \, (-\phi(-y)) \, dy + \int_{-\infty}^{\infty} S(x-y,t) \, \phi(y) \, dy$$

$$(u-sub: p = -y, dp = -dy \Rightarrow dy = -dp, p(-\infty) = \infty, p(0) = 0)$$

$$= \int_{-\infty}^{\infty} S(x+p,t) \, \phi(p) \, dp + \int_{-\infty}^{\infty} S(x-y,t) \, \phi(y) \, dy$$

$$= -\int_{-\infty}^{\infty} S(x+y,t) \, \phi(y) \, dy + \int_{-\infty}^{\infty} S(x-y,t) \, \phi(y) \, dy$$

(u-sub: y = p, and we reversed the order of integration)

STEP 5: Conclusion

$$u(x,t) = \int_{0}^{\infty} (S(x-y,t)-S(x+y,t)) \phi(y) dy$$

$$\mathbf{u}(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{0}^{\infty} \left[e^{\frac{-(x-y)^{2}}{4kt}} - e^{-\frac{(x+y)^{2}}{4kt}} \right] \phi(y) \, dy$$

(Notice the integral is from 0 to infinity!

Also don't memorize it, but know how to derive it)

Example: Solve

$$\begin{cases} u_{t} = k u_{xx} & (x > 0) \\ u(0,t) = 0 \\ u(x,0) = 1 \end{cases}$$

$$\phi(x) = 1$$

$$u(x,t) = \int_{0}^{\infty} [S(x-y,t) - S(x+y,t)] \quad 1 \quad dy$$

$$= \int_{0}^{\infty} S(y-x,t) \, dy - \int_{0}^{\infty} S(x+y,t) \, dy$$

(S is even, so
$$S(x-y,t) = S(-(x-y),t) = S(y-x,t)$$
)

$$= \int_{-x}^{\infty} S(p,t) dp - \int_{-x}^{\infty} S(q,t) dq$$

$$(p = y-x, dp = dy, p(0) = -x, p(\infty) = \infty - x = \infty)$$

 $(q = x + y, dq = dy, q(0) = x, q(\infty) = x + \infty = \infty)$
 $S(y,t) dy + S(y,t) dy$

$$= \int_{-x}^{x} S(y,t) dy$$

= 2
$$\int_{0}^{x} S(y,t) dy$$
 (because S is even)

$$= \frac{1}{\sqrt{4\pi kt}} \int_{0}^{x} \left[e^{\frac{-y^{2}}{4kt}} \right] dy$$

$$p = y/(4kt)^{1/2}$$

$$dp = dy/(4kt)^{1/2}$$

$$= \frac{\sqrt{4kt}}{\sqrt{\pi kt}} \int_0^{\frac{X}{\sqrt{4kt}}} \left[e^{-p^2} \right] dp$$

$$\mathbf{u(x,t)} = \frac{2}{\sqrt{\pi}} \int_0^{\frac{\mathbf{x}}{\sqrt{4kt}}} \left[e^{-p^2} \right] \mathrm{d}p$$

(as explicit as we can get; sometimes called "Error function", u(x,t) is multiple of area under bell curve)

Interpretation: Notice:

$$u(0,t) = \frac{2}{\sqrt{\pi}} \int_0^{\frac{0}{\sqrt{4kt}}} \left[e^{-p^2} \right] dp = 0$$

$$\mathbf{u}(\infty, \mathbf{t}) = \frac{2}{\sqrt{\pi}} \int_0^\infty \left[e^{-p^2} \right] \mathrm{d}p = 1$$

So if t > 0 is fixed, u(x,t) increases from 0 (where it's insulated) to 1:

Picture: t fixed

As t increases, we still have the same phenomenon, but The graph of u gets stretched horizontally