
Let's continue our half-line extravaganza!

I- NEUMANN PROBLEM

What if we now want to solve

ut = k uxx (x > 0)

ux(0,t) = 0

u(x,0) = �(x)

This time we want the derivative of a function to be odd, 

so we want the function to be even

STEP 1: Evenify f

Recall:

�even(x) =    �(x)   if x > 0

�(-x) if x < 0

STEP 2: 
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Solve

ut = k uxx

u(x,0) = �even(x)

=> u(x,t) = S(x,t) * �even(x)

And just like last time you eventually get

u(x,t) =      [S(x-y,t) + S(x+y,t)]  �(y) dy

(see Homework 5 for details)

Example: Solve

ut = k uxx (x > 0)

ux(x,0) = 0

u(0,t) = 1

By above, with �(y) = 1, get

u(x,t) =    [S(x-y,t) + S(x+y,t)] 1 dy

=    S(p,t) (-dp)  +     S(q,t) dy



(p = x-y, q = x + y)

=      S(y,t) dy +    S(y,t) dy

=    S(y,t) dy

= 1   (by definition of S)

II- REFLECTION OF WAVES

The really neat thing is that the exact same method also 

works for the wave equation!

Setting: Solve

utt = c2 uxx (x > 0)

u(0,t) = 0

u(x,0) = �(x)

ut(x,0) = �(x)   

Wave equation, but this time you have a wall/barrier at x = 0

Picture:



Remember that for the wave equation, the initial position �(x) 

splits into two parts, one going to the right and the other 

going to the left. The right part won't be affected, but the 

left part is eventually going to hit the wall and change 

direction!

Picture:

Let's see if this indeed happens!

STEP 1: Oddify both � and �

�odd (x) =      �(x)    if x > 0

-�(-x)   if x < 0

�odd(x) =     �(x)    if x > 0

-�(-x)   if x < 0

STEP 2: Solve



utt = c2 uxx

u(x,0) = �odd(x)

ut(x,0) = �odd(x)

=> D'Alembert:

u(x,t) = 1/2 (�odd(x-ct) + �odd(x+ct)) + 1/(2c)   �odd(s) ds

Then, as before, u solves our original problem!

Ex: u(0,t) = 1/2 (�odd(-ct) + �odd(ct)) + 1/(2c)    �odd(s) ds

= 1/2 (-fodd(ct) + fodd(ct)) + 0

= 0

STEP 3: Write in terms of � and �

Note: We always have x + ct > 0 (since x > 0), so in D'Alembert 

above we just need to argue in terms of the sign of x-ct

CASE 1: x-ct > 0 (=> t < x/c think "t small")

Then �odd(x-ct) = �(x-ct) (and �odd(x+ct) = �(x+ct)) and 

�odd(s) = �(s) on [x-ct,x+ct] (since x-ct > 0), so



u(x,t) = 1/2 (�(x-ct) + �(x+ct)) + 1/(2c)    �(s) ds

(usual d'Alembert's formula)

Interpretation: Before you hit the wall, the wave just goes on 

as usual

Picture: t small

CASE 2: x-ct < 0 (=> t > x/c think "t large")

Then �odd(x-ct) = -�(-(x-ct)) = -�(ct-x) 

(and �odd(x+ct) = �(x+ct) = �(ct+x))

And 

�odd(s) ds  =      �odd(s) ds  +       �odd(s) ds



�odd(s) ds  =      �odd(s) ds  +       �odd(s) ds

=    -�(-s) ds +      �(s) ds

p = -s

dp = -ds

=      �(p) dp  +     �(s) ds

=           �(s) ds

And therefore

u(x,t) =   1/2  ( �(ct+x) - �(ct-x)) + 1/(2c)       �(s) ds

"Reflected D'Alembert's Formula"

Picture: t large

ct + x
ct - xx-ct



Domain of dependence 

(= given (x,t), which initial values does u(x,t) depend on?)

Case 1: t small

Remarks: 

Note: Can also explain this with the 

Case 2: t large

Reflection



The case ux(0,t) = 0 is similar (this time you evenify � and  

�, see Homework 5)

1)

In theory, can also treat the problem where there are two 

walls:

2)

utt = c2 uxx (0 < x < l)

u(0,t) = 0, u(l,t) = 0

u(x,0) = �(x), ut(x,0) = �(x)

This time there will be many reflections back and forth, and 

the formula gets quickly out of hand (but feel free to check 

out 3.2 if you're interested)

III- INHOMOGENEOUS PROBLEM

Lastly, What if you don't require u = 0 at the endpoint, but 

instead u = 7 ?  

This actually can be dealt with with one simple trick!



ut = k uxx (x > 0)

u(x,0) = �(x)     (x > 0)

u(0,t) = 7

Trick: Let   v(x,t) = u(x,t) - 7

Then vt = k vxx (check)

v(x,0) = u(x,0) - 7 = �(x)-7

v(0,t) = u(0,t) - 7 = 7 - 7 = 0  

So v solves:

vt = k vxx (x > 0)

v(x,0) = �(x) - 7

v(0,t) = 0

So by the half heat formula with �(x) - 7 instead of �(x) 

v(x,t) =         [S(x-y,t) - S(x+y,t)](�(y) - 7) dy

u(x,t) - 7 =      [S(x-y,t) - S(x+y,t)](�(y) - 7) dy

Example: (going back to heat equation)



u(x,t) = 7 +       [S(x-y,t) - S(x+y,t)](�(y) - 7) dy

Note: Same trick works with wave equation. In that case �(x) 

becomes �(x) - 7, but �(x) stays the same!

Example: 

ut = k uxx (x > 0)

u(x,0) = �(x)     (x > 0)

ux(0,t) = 7      

This time v(x,t) = u(x,t) - 7x

(basically want a function whose x derivative is 7)

Then same process, but �(x) becomes �(x) - 7x and you get

u(x,t) = 7x +       [S(x-y,t) + S(x+y,t) ] (�(y) - 7y) dy

(And again, same thing with the wave equation, �(x) becomes 

�(x) - 7x, but �(x) is unchanged)

Note: Finally, can also solve truly inhomogeneous versions of 

heat and wave equations (on the whole line and the half line), 

such as ut = k uxx + f(x,t) (using the usual homogeneous + 

particular solution trick), and you can check out 3.3 and 3.4 if 

you like.


