LECTURE 18: SEPARATION OF VARIABLES (I)

Welcome to the most important PDE technique of the course:
Separation of variables! It's the technique that will help us solve all the remaining PDEs (like the rod of finite length, and even Laplace's equation)

LONG technique, but will do this at least 4 times!

I- BOUNDARY VALUE PROBLEM

Before we do that, let's solve a problem that is purely ODE, but will be crucial in our process.

Example: Find a nonzero solution $X(x)$ of
$\left\{\begin{array}{l}X^{\prime \prime}(x)=\lambda X(x) \\ X(0)=0 \\ X(\pi)=0\end{array}\right.$

Idea: The solutions of, for example, $X^{\prime \prime}=-X$ (which involve $\cos \& \sin$) are very different from the solutions of $X^{\prime \prime}=X$ (which involve exponential terms), so we need to argue in terms of the sign of λ

CASE 1: $\lambda>0$
Then $\lambda=\omega^{2}$ for some $\omega>0$
(Ex: If $\lambda=4$, then $\lambda=4=2^{2}$ so $\omega=2$)
Why: If you don't assume that, you'll get nasty $\sqrt{\lambda}$ everywhere
Then:

$$
X^{\prime \prime}=\lambda X \Rightarrow X^{\prime \prime}=\omega^{2} X \Rightarrow X^{\prime \prime}-\omega^{2} X=0
$$

From Math 3D (ODE), we get:
Auxiliary equation: $r^{2}-\omega^{2}=0 \Rightarrow r^{2}=\omega^{2} \Rightarrow r= \pm \omega$

$$
\begin{aligned}
& \Rightarrow X(x)=A e^{\omega x}+B e^{-\omega x} \\
& \text { But } X(0)=A e^{\omega 0}+B e^{-\omega 0}=A+B=0(\text { since } X(0)=0) \\
& \Rightarrow B=-A
\end{aligned}
$$

So $X(x)=A e^{\omega x}-A e^{-\omega x}$
But $X(\pi)=0 \Rightarrow A e^{\omega \pi}-A e^{-\omega \pi}=0$

$$
\begin{aligned}
& \Rightarrow \nless\left(e^{\omega \pi}-e^{-\omega \pi}\right)=0 \\
& \Rightarrow e^{\omega \pi}-e^{-\omega \pi}=0
\end{aligned}
$$

$\left(A \neq 0\right.$, because otherwise $\left.X(x)=A e^{\omega x}-A e^{-\omega x}=0\right)$

$$
\begin{aligned}
& \Rightarrow e^{\omega \pi}=e^{-\omega \pi} \\
& \Rightarrow \omega \pi=-\omega \pi
\end{aligned}
$$

$$
\Rightarrow \omega=0
$$

But then $\lambda=\omega^{2}=0$ which is not positive! $=><=$

CASE 2: $\lambda=0$

Then $X^{\prime \prime}=0 X \Rightarrow X^{\prime \prime}(x)=0$

$$
\Rightarrow X(x)=A x+B
$$

$X(0)=A 0+B=B=0$, so $X(x)=A x$
$X(\pi)=A \pi=0 \Rightarrow A=0$, but then $X(x)=0 x=0 \Rightarrow><=$

CASE 3: $\lambda<0$
Then $\lambda=-\omega^{2}$ for some $w>0$
(Ex: $\left.\lambda=-4=-2^{2}\right)$
$X^{\prime \prime}=\lambda X \Rightarrow X^{\prime \prime}=-\omega^{2} X \Rightarrow X^{\prime \prime}+\omega^{2} X=0$

Aux: $r^{2}+\omega^{2}=0 \Rightarrow r^{2}=-\omega^{2} \Rightarrow r= \pm \omega i$
$X(x)=A \cos (\omega x)+B \sin (\omega x)$
$X(0)=A \cos (\omega 0)+B \sin (\omega 0)$
$=A 1+B 0$
$=A=0($ since $X(0)=0)$
So $X(x)=0 \cos (\omega x)+B \sin (\omega x)=B \sin (\omega x)$

$$
\begin{aligned}
X(\pi) & =\beta \sin (\omega \pi)=0 \\
& \Rightarrow \sin (\omega \pi)=0 \\
& \Rightarrow \omega \pi=\pi m(m=1,2, \ldots) \\
& \Rightarrow \omega=m
\end{aligned}
$$

Answer: For every m, we have a solution,

$$
X(x)=\sin (\omega x)=\sin (m x) \quad(m=1,2, \ldots)
$$

Note: This problem is sometimes called an eigenvalue problem.

The eigenvalues of $X^{\prime \prime}=\lambda X$ are $\lambda=-\omega^{2}=-m^{2}$
And the eigenfunction are $X(x)=\sin (m x)$
(Compare to $A x=\lambda x$, from linear algebra, here have infinitely many eigenvalues and eigenvectors)

II- SETTING

Now let's go back to PDEs and see why we need the problem above

Example: Solve

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \quad(0<x<\pi) \\
u(0, t)=0, u(\pi, t)=0 \\
u(x, 0)=x^{2}
\end{array}\right.
$$

$$
U(0, t)=0 \quad U(x, t)
$$

Picture:

It's the usual finite rod problem that's insulated at the endpoints, but this time we actually want to find a solution.

Remarks:

1) We already showed uniqueness using energy methods/maximum principle, so everything just boils down to finding A solution.
2) We want to find NONZERO solutions (the zero solution isn't very interesting)

Motivation: For the heat equation on the whole line, we assumed u had a special form

$$
u(x, t)=1 / \sqrt{t} v(x / \sqrt{t})
$$

And we then turned the heat equation into an ODE for v :

$$
v^{\prime \prime}+(y / 2) v^{\prime}+(1 / 2) v=0 \quad<- \text { MUUUCH simpler! }
$$

Here we want to do something similar.

III- SEPARATION OF VARIABLES

STEP 1: Separation of variables

1) Assume $u(x, t)$ has a special form, namely:

$$
\mid u(x+)=X(x) T(t) \quad(*)
$$

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{*}
\end{equation*}
$$

Where X is a function of x and T is a function of t only
Ex: $\sin (x) \cos (t)$ is of this form, and so is $\left(x^{2}+1\right)\left(t^{3}-4\right)$, but $\ln (3 x+2 t)$ is not of this form!

$$
\begin{aligned}
& \text { 2) Plug (*) into } u_{t}=k u_{x x} \\
& \text { (X(x)T(t)) })_{+}=k(X(x) T(t))_{x x} \\
& X(x)(T(t))_{+}=k(X(x))_{x x} T(t) \\
& X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t)
\end{aligned}
$$

3) Put all the X terms on one side and all the T terms on the other side

$$
\frac{T^{\prime}(t)}{k T(t)}=\frac{x^{\prime \prime}(x)}{X(x)}
$$

Always put any extra terms like k (or c^{2}) with T (because we want to keep the X equation as simple as possible)

STEP 2: Constant

1) Look at the quantity

$$
\frac{x^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}
$$

On the one hand,
$\left(\frac{X^{\prime \prime}(x)}{X(x)}\right)_{t}=0$
But also
$\left(\frac{X^{\prime \prime}(x)}{X(x)}\right)_{x}=\left(\frac{T^{\prime}(t)}{k T(t)}\right)_{x}=0$

So the $\frac{X^{\prime \prime}(x)}{X(x)}$ doesn't depend on x or t, so it is constant!

Conclusion: $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}=$ constant $=\lambda$
$\Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\lambda \Rightarrow X^{\prime \prime}(x)=\lambda X(x)$
And $\frac{T^{\prime}(t)}{k T(t)}=\lambda \Rightarrow T^{\prime}(t)=k \lambda T(t)$

GOOD! We're on the right track; instead of a PDE, we get 2 ODEs.
2) Focus on $X(x)$ equation! (don't touch T until the end!!!)

So far: $X^{\prime \prime}(x)=\lambda X(x)$

Now use the boundary conditions:

$$
\begin{aligned}
u(0, t)=0 & \Rightarrow X(0) I(t)=0(\text { since } u(x, t)=X(x) T(t)) \\
& \Rightarrow X(0)=0
\end{aligned}
$$

(Why can you cancel out T ? If $T=0$, then $u=X T=0$, which wouldn't be interesting. So pick a \dagger where $T(t)$ is nonzero, and cancel out T there)

Similarly $u(\pi, t)=0 \Rightarrow X(\pi) T(t)=0 \Rightarrow X(\pi)=0$
Hence we get the ODE

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)=\lambda X(x) \\
X(0)=0 \\
X(\pi)=0
\end{array}\right.
$$

Same ODE as the beginning of lecture!!!
STEP 3: Boundary-value problem
INSERT PREVIOUS EXAMPLE
Conclusion: $\lambda=-m^{2}(m=1,2, \ldots)$

$$
X(x)=\sin (m x) \quad(m=1,2, \ldots)
$$

STEP 4: T equation

$$
\frac{T^{\prime}}{k T}=\lambda=-m^{2}
$$

$$
\begin{aligned}
& \Rightarrow T^{\prime}=-m^{2} k T \\
& \Rightarrow T(t)=e^{-m^{2} k t} \text { (ignore constant } C \text { for now) }
\end{aligned}
$$

Conclusion: For every $m=1,2, \ldots$
$u(x, t)=X(x) T(t)=\sin (m x) e^{-m^{2} k t}$ is a solution of our PDE
STEP 5: Linearity
Important observation: Since the PDE is linear, any linear combo of the above solution is also a solution!

So

$$
u(x, t)=A_{1} \sin (1 x) e^{-(1)^{2} k t}+A_{2} \sin (2 x) e^{-(2)^{2} k t}+\ldots
$$

$$
u(x, t)=\sum_{M=1}^{\infty} A_{m} \sin (m x) e^{-m^{2} k t} \quad \text { solves the PDE }
$$

STEP 6: Initial Condition

$$
u(x, 0)=\sum_{M=1}^{\infty} A_{m} \sin (m x) e^{-m^{2} k 0}=\sum_{M=1}^{\infty} A_{m} \sin (m x)
$$

$$
x^{2}=\sum_{M=1}^{\infty} A_{m}^{l} \sin (m x)
$$

=> BIG QUESTION:

Can you find A_{m} such that the above is true?
In other words, can you write x^{2} as a linear combo of sines?

YES, see Chapter 5
(In fact, this is precisely why Fourier series were invented)

Picture:

IV- EASIER PROBLEM

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \\
u(0, t)=0, u(\pi, t)=0 \\
u(x, 0)=3 \sin (2 x)+4 \sin (3 x)
\end{array}\right.
$$

Steps 1-5 still work:

$$
u(x, t)=\sum_{M=1}^{\infty} A_{m} \sin (m x) e^{-m^{2} k t}
$$

This time:

$$
\begin{aligned}
& u(x, 0)=\sum_{M=1}^{\infty} A_{m} \sin (m x)=3 \sin (2 x)+4 \sin (3 x) \\
& \Rightarrow \quad A_{1} \sin (x)+A_{2} \sin (2 x)+A_{3} \sin (3 x)+\ldots \\
& =0 \sin (x)+3 \sin (2 x)+4 \sin (3 x)
\end{aligned}
$$

$$
A_{1}=0, A_{2}=3, A_{3}=4, A_{4}=0 \text {, etc. }
$$

(just compare the coefficients)

$$
u(x, t)=\sum_{M=1}^{\infty} A_{m} \sin (m x) e^{-m}{ }^{2} k t
$$

$$
u(x, t)=3 \sin (2 x) e^{-4 k t}+4 \sin (3 x) e^{-9 k t}
$$

Interpretation: Solution starts as $3 \sin (2 x)+4 \sin (3 x)$, but eventually dies down because the exponential terms go to 0

Picture:

