LECTURE 19: SEPARATION OF VARIABLES (II)

This time we'll separate variables, but with the wave equation!

I- SETTING

Example: This time solve

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x} \quad(0<x<1) \\
& u(0, t)=0, u(1, t)=0 \\
& u(x, 0)=x^{2} \\
& u_{t}(x, 0)=e^{x}
\end{aligned}
$$

$$
u(x, t)
$$

II- SEPARATION OF VARIABLES

STEP 1: Separation of variables

1) Suppose:

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{*}
\end{equation*}
$$

2) Plug (*) into $u_{t t}=c^{2} u_{x x}$

$$
\begin{aligned}
& (X(x) T(t))_{+t}=c^{2}(X(x) T(t))_{x x} \\
& X(x) T^{\prime \prime}(t)=c^{2} X^{\prime \prime}(x) T(t)
\end{aligned}
$$

3) Again, put all the T terms on one side, and all the X terms on the other side, making sure the constants go with T

$$
\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

Like last time, this implies that everything is constant (because the left-hand-side only depends on t whereas the right-hand-side only depends on x)

$$
\begin{aligned}
& \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\lambda \\
& \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\lambda \Rightarrow X^{\prime \prime}(x)=\lambda X(x)
\end{aligned}
$$

And $\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\lambda \Rightarrow T^{\prime \prime}(t)=c^{2} \lambda T(t)$

STEP 2: $X(x)$ equation
So far: $X^{\prime \prime}(x)=\lambda X(x)$

Now use the boundary conditions:
$u(0, t)=0 \Rightarrow X(0) T(t)=0 \Rightarrow \underline{X(0)=0}$
(Again, can cancel out because otherwise get 0 solution)
Similarly $u(1, t)=0 \Rightarrow X(1) T(t)=0 \Rightarrow \underline{X(1)=0}$
Hence we get the ODE
$\left\{\begin{array}{l}X^{\prime \prime}(x)=\lambda X(x) \\ X(0)=0 \\ X(1)=0\end{array}\right.$

STEP 3: Boundary-value problem

Again, argue in terms of the sign of λ
CASE $1: \lambda>0$
Then $\lambda=\omega^{2}$ for some $\omega>0$

Then:

$$
X^{\prime \prime}=\lambda X \Rightarrow X^{\prime \prime}=\omega^{2} X \Rightarrow X^{\prime \prime}-\omega^{2} X=0
$$

Aux: $r^{2}-\omega^{2}=0 \Rightarrow r^{2}=\omega^{2} \Rightarrow r= \pm \omega$
$\Rightarrow X(x)=A e^{\omega x}+B e^{-\omega x}$
But $X(0)=A e^{\omega 0}+B e^{-\omega 0}=A+B=0($ since $X(0)=0)$

$$
\Rightarrow B=-A
$$

So $X(x)=A e^{\omega x}-A e^{-\omega x}$

$$
\begin{aligned}
\text { But } X(1)=0 & \Rightarrow A e^{\omega 1}-A e^{-\omega 1}=0 \\
& \Rightarrow \not \subset\left(e^{\omega}-e^{-\omega}\right)=0 \\
& \Rightarrow e^{\omega}-e^{-\omega}=0 \\
& \Rightarrow e^{\omega}=e^{-\omega} \\
& \Rightarrow \omega=-\omega \\
& \Rightarrow \omega=0
\end{aligned}
$$

But then $\lambda=\omega^{2}=0=><=($ since we assumed $\lambda>0)$

CASE 2: $\lambda=0$

$$
\text { Then } \begin{aligned}
X^{\prime \prime}=0 X & \Rightarrow X^{\prime \prime}(x)=0 \\
& \Rightarrow X(x)=A X+B
\end{aligned}
$$

$$
X(0)=A 0+B=B=0 \text {, so } X(x)=A x
$$

$X(1)=A 1=A=0 \Rightarrow A=0$, but then $X(x)=0 x=0 \Rightarrow>=$

CASE 3: $\lambda<0$
Then $\lambda=-\omega^{2}$ for some $w>0$

$$
X^{\prime \prime}=\lambda X \Rightarrow X^{\prime \prime}=-\omega^{2} X \Rightarrow X^{\prime \prime}+\omega^{2} X=0
$$

Aux: $r^{2}+\omega^{2}=0 \Rightarrow r^{2}=-\omega^{2} \Rightarrow r= \pm \omega i$

$$
\begin{aligned}
X(x) & =A \cos (\omega x)+B \sin (\omega x) \\
X(0) & =A \cos (\omega 0)+B \sin (\omega 0) \\
& =A 1+B 0 \\
& =A=0(\text { since } X(0)=0)
\end{aligned}
$$

So $X(x)=0 \cos (\omega x)+B \sin (\omega x)=B \sin (\omega x)$

$$
\begin{aligned}
X(1) & =\notin \sin (\omega)=0 \\
& \Rightarrow \sin (\omega)=0 \\
& \Rightarrow \omega=\pi m \quad(m=1,2, \ldots)
\end{aligned}
$$

Answer: For every m, we have a solution,

$$
X(x)=\sin (\omega x)=\sin (\pi m x) \quad(m=1,2, \ldots)
$$

Conclusion: $\lambda=-(\pi m)^{2} \quad(m=1,2, \ldots)$

$$
X(x)=\sin (\pi m x) \quad(m=1,2, \ldots)
$$

Note: Last time we had $\lambda=-m^{2}$ and $X(x)=\sin (m x)$, but that's because we worked on the interval $(0, \pi)$

STEP 4: T equation

$$
\begin{aligned}
& \frac{T^{\prime \prime}}{c^{2} T}=\lambda=-(\pi \mathrm{m})^{2} \\
& \Rightarrow T^{\prime \prime}=-c^{2}(\pi \mathrm{~m})^{2} T \\
& \Rightarrow T^{\prime \prime}=-(\pi \mathrm{mc})^{2} T \quad\left(r^{2}=-(\pi \mathrm{mc})^{2} \Rightarrow r=+/-\pi \mathrm{mci}\right)
\end{aligned}
$$

$\Rightarrow T(t)=A \cos (\pi m c t)+B \sin (\pi m c t)$

Conclusion: For every $m=1,2, \ldots$
$u(x, t)=X(x) T(t)=(A \cos (\pi m c t)+B \sin (\pi m c t)) \sin (\pi m x)$
is a solution of our PDE

STEP 5: Linearity

Take linear combos (= sum over m and replace A and B by A_{m} and B_{m} to emphasize that your constants depend on m)

$$
u(x, t)=\sum_{M=1}^{\infty}\left[A_{m} \cos (\pi m c t)+B_{m} \sin (\pi m c t)\right] \sin (\pi m x)
$$

STEP 6: Initial Condition
$\begin{aligned} u(x, 0) & =\sum_{M=1}^{\infty} \\ x^{2} & =\sum_{M=1}^{\infty}\end{aligned}$
$A_{m} \sin (\pi m x)$

Same problem as last time!

$$
x^{2}=\sum_{M=1}^{\infty} A_{m} \operatorname{WTF}
$$

=> BIG QUESTION:
Can you find A_{m} such that the above expansion is true? In other words, can you write x^{2} as a linear combo of sines?

YES, see Chapter 5
(In fact, this is precisely why Fourier series were invented)
Picture:

STEP 7: Initial velocity
$u(x, t)=\sum_{M=1}^{\infty}\left[A_{m} \cos (\pi m c t)+B_{m} \sin (\pi m c t)\right] \sin (\pi m x)$

$$
\begin{aligned}
& u_{+}(x, t)=\sum_{M=1}^{\infty}\left(\left[A_{m} \cos (\pi m c t)+B_{m} \sin (\pi m c t)\right] \sin (\pi m x)\right)_{t} \\
& =\sum_{M=1}^{\infty}\left[\left(-\pi m c A_{m}\right) \sin (\pi m c t)+\left(\pi m c B_{m}\right) \cos (\pi m c t)\right] \sin (\pi m x) \\
& (t=0) \\
& e^{x}=\sum_{M=1}^{\infty}(x, 0)=\sum_{M=1}^{\infty}\left[\left(-\pi m c A_{m}\right) \sin (\pi m c 0)+\left(\pi m c B_{m}\right) \cos (\pi m c 0)\right] \sin (\pi m x) \\
& e^{x}=\sum_{M=1}^{\infty} \overbrace{B_{m}}^{\infty} \sin (\pi m x) \\
& \sim \\
& \left(B_{m}=\pi m c B_{m}\right)
\end{aligned}
$$

SAME QUESTION!!! Can you write e^{x} as a sum of sines?
(So it seems like a pretty BIG deal to do that!)

So right now, we've reached an impasse, which we'll overcome in Chapter 5.

III- EASIER PROBLEM

Example: Same problem, but

$$
\begin{aligned}
& u(x, 0)=\sin (2 \pi x)+3 \sin (3 \pi x) \\
& u_{+}(x, 0)=4 \sin (2 \pi x)
\end{aligned}
$$

Everything we've shown so far is still true:

$$
u(x, t)=\sum_{M=1}^{\infty}\left[A_{m} \cos (\pi m c t)+B_{m} \sin (\pi m c t)\right] \sin (\pi m x)
$$

But this time we can solve for the constants:

$$
\begin{aligned}
u(x, 0)= & \sum_{M=1}^{\infty} A_{m} \sin (\pi m x) \\
= & A_{1} \sin (\pi x)+A_{2} \sin (2 \pi x)+A_{3} \sin (3 \pi x)+\ldots \\
= & 0 \sin (\pi x)+1 \sin (2 \pi x)+3 \sin (3 \pi x) \\
\Rightarrow A_{1}= & 0, A_{2}=1, A_{3}=3, \text { all other } A_{m}=0 \\
u_{+}(x, 0) & =\sum_{M=1}^{\infty}\left(\pi m c B_{m}\right) \sin (\pi m x) \\
= & \pi c B_{1} \sin (\pi x)+2 \pi c B_{2} \sin (2 \pi x)+3 \pi c B_{3} \sin (3 \pi x)+\ldots \\
= & 0 \sin (\pi x)+4 \sin (2 \pi x)+0 \sin (3 \pi x)+\ldots
\end{aligned}
$$

$\pi c B_{1}=0 \Rightarrow B_{1}=0$
$2 \pi c B_{2}=4 \Rightarrow B_{2}=4 /(2 \pi c)=2 /(\pi c)$
$\pi m c B_{m}=0 \Rightarrow B_{m}=0($ for $m=3,4, \ldots)$
Solution: (notice: No more sums because most terms are 0)
$u(x, t)=\sum_{M=1}^{\infty}\left[A_{m} \cos (\pi m c t)+B_{m} \sin (\pi m c t)\right] \sin (\pi m x)$
$[1 \cos (2 \pi c t)+2 /(\pi c) \sin (2 \pi c t)] \sin (2 \pi x)+[3 \cos (3 \pi c t)] \sin (3 \pi x)$

Example: Same but $u(x, 0)=\sin (2 \pi x), u_{+}(x, 0)=0$
Can show $u(x, t)=\cos (2 \pi c t) \sin (2 \pi x)$

Interpretation: Solution starts as $\sin (2 \pi x)$ and then oscillates back and forth (just like we had for D'Alembert's formula)

Picture: $($ Here $c=1)$

