LECTURE 19: SEPARATION OF VARIABLES (II)

Monday, November 4, 2019 12:47 PM

This time we'll separate variables, but with the wave equation!

I- SETTING

Example: This time solve

 $u_{tt} = c^2 u_{xx} \quad (0 < x < 1)$ u(0,t) = 0, u(1,t) = 0 $u(x,0) = x^2$ $u_t(x,0) = e^x$

U(x, t)

Picture:

II- SEPARATION OF VARIABLES

STEP 1: Separation of variables

1) Suppose:

$$u(x,t) = X(x) T(t)$$

(*)

2) Plug (*) into $u_{tt} = c^2 u_{xx}$

$$(X(x) T(t))_{tt} = c^2 (X(x) T(t))_{xx}$$

$$X(x) T''(t) = c^2 X''(x) T(t)$$

3) Again, put all the T terms on one side, and all the X terms on the other side, making sure the constants go with T

$$\frac{T''(t)}{c^2 T(t)} = \frac{X''(x)}{X(x)}$$

Like last time, this implies that everything is constant (because the left-hand-side only depends on t whereas the right-hand-side only depends on x)

$$\Rightarrow \frac{X''(x)}{X(x)} = \frac{T''(t)}{c^2 T(t)} = \lambda$$

$$\Rightarrow \underline{X''(x)} = \lambda \Rightarrow X''(x) = \lambda X(x)$$

$$X(x)$$

And
$$\underline{\mathsf{T''}(\mathsf{t})} = \lambda \Rightarrow \mathsf{T''}(\mathsf{t}) = c^2 \lambda \, \mathsf{T}(\mathsf{t})$$

$$c^2 \mathsf{T}(\mathsf{t})$$

STEP 2: X(x) equation

So far: $X''(x) = \lambda X(x)$

Now use the boundary conditions:

$$u(0,t) = 0 \Rightarrow X(0) T(t) = 0 \Rightarrow X(0) = 0$$

(Again, can cancel out because otherwise get 0 solution)

Similarly
$$u(1,t) = 0 \Rightarrow X(1)T(t) = 0 \Rightarrow X(1) = 0$$

Hence we get the ODE

STEP 3: Boundary-value problem

Again, argue in terms of the sign of $\boldsymbol{\lambda}$

CASE 1: λ > 0

Then $\lambda = \omega^2$ for some $\omega > 0$

Then:

$$X'' = \lambda X \Rightarrow X'' = \omega^2 X \Rightarrow X'' - \omega^2 X = 0$$

Aux:
$$r^2 - \omega^2 = 0 \Rightarrow r^2 = \omega^2 \Rightarrow r = \pm \omega$$

=>
$$X(x) = A e^{\omega x} + B e^{-\omega x}$$

But
$$X(0) = A e^{\omega 0} + B e^{-\omega 0} = A + B = 0$$
 (since $X(0) = 0$)

$$\Rightarrow$$
 B = -A

So
$$X(x) = A e^{\omega x} - A e^{-\omega x}$$

But X(1) = 0 =>
$$A e^{\omega 1} - A e^{-\omega 1} = 0$$

=> $A(e^{\omega} - e^{-\omega}) = 0$
=> $e^{\omega} - e^{-\omega} = 0$
=> $e^{\omega} = e^{-\omega}$
=> $\omega = -\omega$
=> $\omega = 0$

But then $\lambda = \omega^2 = 0 \implies$ (since we assumed $\lambda > 0$)

CASE 2: $\lambda = 0$

Then X'' = 0 X => X''(x) = 0
=>
$$X(x) = Ax + B$$

$$X(0) = A0 + B = B = 0$$
, so $X(x) = Ax$

$$X(1) = A1 = A = 0 \Rightarrow A = 0$$
, but then $X(x) = 0x = 0 \Rightarrow A = 0$

CASE 3: λ < 0

Then $\lambda = -\omega^2$ for some w > 0

$$X'' = \lambda X \Rightarrow X'' = -\omega^2 X \Rightarrow X'' + \omega^2 X = 0$$

Aux:
$$r^2 + \omega^2 = 0 \Rightarrow r^2 = -\omega^2 \Rightarrow r = \pm \omega i$$

$$X(x) = A \cos(\omega x) + B \sin(\omega x)$$

$$X(0) = A \cos(\omega 0) + B \sin(\omega 0)$$

= A 1 + B 0
= A = 0 (since X(0) = 0)

So
$$X(x) = 0 \cos(\omega x) + B \sin(\omega x) = B \sin(\omega x)$$

$$X(1) = \sin(\omega) = 0$$

=> $\sin(\omega) = 0$
=> $\omega = \pi m \ (m = 1, 2, ...)$

Answer: For every m, we have a solution,

$$X(x) = \sin(\omega x) = \sin(\pi m x)$$
 (m = 1, 2, ...)

Conclusion: $\lambda = -(\pi m)^2$ (m = 1, 2, ...)

$$X(x) = \sin(\pi m x)$$
 (m = 1, 2, ...)

Note: Last time we had $\lambda = -m^2$ and $X(x) = \sin(mx)$, but that's because we worked on the interval $(0,\pi)$

STEP 4: T equation

$$\frac{\mathsf{T''}}{\mathsf{c}^2\mathsf{T}} = \lambda = -(\pi\mathsf{m})^2$$

$$\Rightarrow$$
 T'' = $-c^2 (\pi m)^2 T$

=> T'' =
$$-(\pi mc)^2$$
 T $(r^2 = -(\pi mc)^2 => r = +/-\pi mci)$

$$\Rightarrow$$
 T(t) = A cos(π mct) + B sin(π mct)

Conclusion: For every m = 1, 2, ...

$$u(x,t) = X(x)T(t) = (A cos(\pi mct) + B sin(\pi mct))sin(\pi mx)$$
 is a solution of our PDE

STEP 5: Linearity

Take linear combos (= sum over m and replace A and B by A_m and B_m to emphasize that your constants depend on m)

$$u(x,t) = \sum_{m=1}^{\infty} [A_m \cos(\pi m ct) + B_m \sin(\pi m ct)] \sin(\pi m x)$$

STEP 6: Initial Condition

$$u(x,0) = \begin{cases} A_{m} \cos(\pi mc0) + B_{m} \sin(\pi mc0) \end{bmatrix} \sin(\pi mx)$$

$$M=1$$

$$x^{2} = \begin{cases} A_{m} \sin(\pi mx) \end{cases}$$

$$M=1$$

Same problem as last time!

$$x^{2} = \sum_{M=1}^{4} A_{m} \sin(\pi m x)$$

=> BIG QUESTION:

Can you find A_m such that the above expansion is true? In other words, can you write x^2 as a linear combo of sines?

YES, see Chapter 5

(In fact, this is precisely why Fourier series were invented)

Picture:

STEP 7: Initial velocity

$$u(x,t) = \int_{M=1}^{\infty} [A_m \cos(\pi m ct) + B_m \sin(\pi m ct)] \sin(\pi m x)$$

$$u_{1}(x,t) = \sum_{M=1}^{\infty} ([A_{m} \cos(\pi m ct) + B_{m} \sin(\pi m ct)] \sin(\pi m x))_{t}$$

$$= \sum_{M=1}^{\infty} [(-\pi m c A_{m}) \sin(\pi m ct) + (\pi m c B_{m}) \cos(\pi m ct)] \sin(\pi m x)$$

$$(t = 0)$$

$$u_{1}(x,0) = \sum_{M=1}^{\infty} [(-\pi m c A_{m}) \sin(\pi m c0) + (\pi m c B_{m}) \cos(\pi m c0)] \sin(\pi m x)$$

$$e^{x} = \sum_{M=1}^{\infty} (\pi m c B_{m}) \sin(\pi m x)$$

$$e^{x} = \sum_{M=1}^{\infty} B_{m} \sin(\pi m x)$$

$$(B_{m} = \pi m c B_{m})$$

SAME QUESTION!!! Can you write ex as a sum of sines?

(So it seems like a pretty BIG deal to do that!)

So right now, we've reached an impasse, which we'll overcome in Chapter 5.

III- EASIER PROBLEM

Example: Same problem, but

$$u(x,0) = \sin(2\pi x) + 3 \sin(3\pi x)$$

$$u_t(x,0) = 4\sin(2\pi x)$$

Everything we've shown so far is still true:

$$u(x,t) = \sum_{M=1}^{\infty} [A_m \cos(\pi m ct) + B_m \sin(\pi m ct)] \sin(\pi m x)$$

But this time we can solve for the constants:

$$u(x,0) = \sum_{m=1}^{\infty} A_m \sin(\pi m x)$$

$$= A_1 \sin(\pi x) + A_2 \sin(2\pi x) + A_3 \sin(3\pi x) + ...$$

=
$$0 \sin(\pi x) + 1 \sin(2\pi x) + 3 \sin(3\pi x)$$

=>
$$A_1$$
 = 0, A_2 = 1, A_3 = 3, all other A_m = 0

$$u_{t}(x,0) = \int_{\mathbf{M}=1}^{2} (\pi m c B_{m}) \sin(\pi m x)$$

=
$$\pi c B_1 \sin(\pi x) + 2\pi c B_2 \sin(2\pi x) + 3\pi c B_3 \sin(3\pi x) + ...$$

= $0 \sin(\pi x) + 4 \sin(2\pi x) + 0 \sin(3\pi x) + ...$

$$\pi c B_1 = 0 \Rightarrow B_1 = 0$$

 $2\pi c B_2 = 4 \Rightarrow B_2 = 4/(2\pi c) = 2/(\pi c)$

$$\pi$$
mcB_m = 0 => B_m = 0 (for m = 3, 4, ...)

Solution: (notice: No more sums because most terms are 0)

$$u(x,t) = \int_{M=1}^{\infty} [A_m \cos(\pi m ct) + B_m \sin(\pi m ct)] \sin(\pi m x)$$

$$[1 \cos(2\pi ct) + 2/(\pi c) \sin(2\pi ct)] \sin(2\pi x) + [3 \cos(3\pi ct)] \sin(3\pi x)$$

$$A_2 \qquad B_2 \qquad A_3$$

Example: Same but $u(x,0) = \sin(2\pi x)$, $u_t(x,0) = 0$

Can show $u(x,t) = cos(2\pi ct)sin(2\pi x)$

Interpretation: Solution starts as $sin(2\pi x)$ and then oscillates back and forth (just like we had for D'Alembert's formula)

Picture: (Here c = 1)

$$b = 0$$

$$b = 0$$

$$b = \frac{1}{8}$$

$$0$$

$$b = \frac{1}{4}$$

$$1/2$$

$$0$$

$$b = \frac{1}{4}$$