LECTURE 20: SEPARATION OF VARIABLES (III)

Monday, November 4, 2019 12:47 PM

This time we'll separate variables, but with a Neumann condition

I- SETTING

Example: This time solve

$$\begin{cases} u_{t} = k u_{xx} & (0 < x < \pi) \\ u_{x}(0,t) = 0, u_{x}(\pi,t) = 0 \\ u(x,0) = x \end{cases}$$

(Heat equation, but this time the velocity at the endpoints is 0)

II- SEPARATION OF VARIABLES

STEP 1: Separation of variables

1) Suppose:

$$u(x,t) = X(x) T(t)$$
 (*)

2) Plug (*) into $u_{tt} = c^2 u_{xx}$

$$(X(x) T(t))_{t} = k (X(x) T(t))_{xx}$$

$$X(x) T'(t) = k X''(x) T(t)$$

3) Again, put all the T terms on one side, and all the X terms on the other side, making sure the constants go with T

$$\frac{T'(t)}{k T(t)} = \frac{X''(x)}{X(x)}$$

Like last time, this implies that everything is constant (because the left-hand-side only depends on t whereas the right-hand-side only depends on x)

$$= \times \frac{X''(x)}{X(x)} = \frac{T'(t)}{k T(t)} = \lambda$$

$$\Rightarrow \underline{X''(x)} = \lambda \Rightarrow X''(x) = \lambda X(x)$$

$$X(x)$$

And
$$\underline{T'(t)} = \lambda \Rightarrow T'(t) = k \lambda T(t)$$

kT(t)

STEP 2: X(x) equation

So far:
$$X''(x) = \lambda X(x)$$

NEW BOUNDARY CONDITIONS

$$u(x,t) = X(x) T(t)$$

$$u_x(x,t) = (X(x) T(t))_x = X'(x) T(t)$$

$$u_{x}(0,t) = X'(0) T(t) = 0 \Rightarrow X'(0) = 0$$

$$u_{x}(\pi,t) = X'(\pi)T(t) = 0 \Rightarrow X'(\pi) = 0$$

Hence we get the ODE

$$X''(x) = \lambda X(x)$$

$$X'(0) = 0$$

 $X'(\pi) = 0$

STEP 3: Boundary-value problem

Again, argue in terms of the sign of λ (but this time slightly different!)

CASE 1: $\lambda > 0$

Then $\lambda = \omega^2$ for some $\omega > 0$

Then:

$$X'' = \lambda X \Rightarrow X'' = \omega^2 X \Rightarrow X'' - \omega^2 X = 0$$

Aux:
$$r^2 - \omega^2 = 0 \Rightarrow r^2 = \omega^2 \Rightarrow r = \pm \omega$$

=>
$$X(x) = A e^{0x} + B e^{-0x}$$

$$\Rightarrow$$
 X'(x) = A ω e $^{\omega x}$ - B ω e $^{-\omega x}$

=> X'(0) =
$$A \omega e^{\omega 0} - B \omega e^{-\omega 0} = A\omega - B\omega = (A-B)/0 = 0$$

$$\Rightarrow$$
 B = A

So
$$X(x) = A e^{\omega x} + A e^{-\omega x}$$

$$\Rightarrow$$
 X'(x) = A\omega e^\omega - A\omega e^\omega x

=> X'(
$$\pi$$
) = $A\omega e^{\omega \pi}$ - $A\omega e^{-\omega \pi}$ = $A\omega (e^{\omega \pi} - e^{-\omega \pi})$ = 0

$$=> e^{\omega \pi} - e^{-\omega \pi} = 0$$

$$\Rightarrow$$
 $e^{\omega \pi} = e^{-\omega \pi}$

$$\Rightarrow \omega \pi = -\omega \pi$$

$$\Rightarrow \omega = 0$$

But then $\lambda = \omega^2 = 0 \implies$ (since we assumed $\lambda > 0$)

CASE 2: $\lambda = 0$

Then X'' = 0 X => X''(x) = 0
=>
$$X(x) = Ax + B$$

=> $X'(x) = A$

$$X'(0) = A = 0$$
, so $A = 0$ and $X(x) = 0x + B = B$

But notice that if X(x) = B, then automatically $X'(\pi) = 0$!

NEW: $\lambda = 0$ works and X(x) = B is a solution!

CASE 3: λ < 0

Then $\lambda = -\omega^2$ for some $\omega > 0$ $X'' = \lambda X \Rightarrow X'' = -\omega^2 X \Rightarrow X'' + \omega^2 X = 0$ **Aux**: $r^2 + \omega^2 = 0 \Rightarrow r^2 = -\omega^2 \Rightarrow r = \pm \omega i$ $X(x) = A \cos(\omega x) + B \sin(\omega x)$ $X'(x) = -A\omega \sin(\omega x) + B\omega \cos(\omega x)$ $X'(0) = -A\omega \sin(\omega 0) + B\omega \cos(\omega 0)$ $= -A\omega O + B\omega 1$ $= B_{gg} = 0$ (Cancel out ω since $\omega > 0$) => B = 0So $X(x) = A \cos(\omega x) + 0 \sin(\omega x) = A \cos(\omega x)$ $X'(x) = -A\omega \sin(\omega x)$ $X'(\pi) = -A\omega \sin(\pi\omega) = 0$ \Rightarrow sin($\pi\omega$) = 0 $\Rightarrow \pi \omega = \pi m$ $\Rightarrow \omega = m \ (m = 1, 2, ...)$ Answer: For every m = 1, 2, ..., we have a solution, $X(x) = \cos(\omega x) = \cos(mx)$ (m = 1, 2, ...) (Different from before!)

Conclusion: $\lambda = -m^2 \ (m = 1, 2, ...)$

$$X(x) = cos(mx)$$
 (m = 1, 2, ...)

Important remark: If you let m = 0 in the above, you get

 $\lambda = -0^2 = 0$ and $X(x) = \cos(0x) = 1$, which is exactly Case 2!

NEW: Actual conclusion: $\lambda = -m^2$ (m = 0, 1, 2, ...)

$$X(x) = cos(mx) (m = 0, 1, 2, ...)$$

Note: That's why later we'll sum from m = 0 to infinity instead from m = 1 to infinity

STEP 4: T equation

$$\frac{T'}{kT} = \lambda = -m^2$$

Note: This is also valid for m = 0, T(t) = C

Conclusion: For every m = 0, 1, 2, ...

$$u(x,t) = X(x)T(t) = C e^{-m^2 kt} \cos(mx)$$

is a solution of our PDE

STEP 5: Linearity

Take linear combos

$$u(x,t) = A_m e^{-m^2 kt} \cos(mx)$$

STEP 6: Initial Condition

$$u(x,0) = \int_{M=0}^{\infty} A_m e^{-m^2 k0} \cos(mx)$$

$$x = \int_{M=0}^{\infty} A_{m} \cos(mx)$$

This time we have a cosine problem!!!

$$x = \underbrace{\begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \end{array}}_{M=0} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{Mm} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}}_{Cos(mx)}$$

This time: Can you write x as a linear combo of cosines?

YES, see Chapter 5

Note: Beware: the book (and others) here use $A_0/2$ instead of A_0 , but in the end you should get the same expansion.

Next time: Actually figuring out how to calculate the coefficients! (Just based on neat linear algebra)

III- INHOMOGENEOUS PROBLEM

1) What if you had to solve?

$$u_{tt} = c^2 u_{xx} \quad (0 < x < \pi)$$

 $u(0,t) = 7, u(\pi,t) = 7$
 $u(x,0) = x^2$
 $u_t(x,0) = x$

Trick: Let

$$v(x,t) = u(x,t) - 7$$

Then $v_{tt} = c^2 v_{xx}$

$$v(0,t) = 7-7 = 0$$

 $v(\pi,t) = 7 - 7 = 0$
 $v(x,0) = x^2 - 7$
 $v_t(x,0) = u_t(x,0) = x$

=> Solve

$$V_{tt} = c^2 V_{xx}$$

 $V(0, +) = 0, V(\pi, +) = 0$

$$v_{tt} = c^{2} v_{xx}$$

$$v(0,t) = 0, v(\pi,t) = 0$$

$$v(x,0) = x^{2} - 7$$

$$v_{t}(x,0) = x$$

Then solve for v using the techniques from the previous lecture, and finally use

$$u(x,t) = v(x,t) + 7$$

2) **SAME** with $u_{x}(0,t) = 7$, $u_{x}(\pi,t) = 7$

$$v(x,t) = u(x,t) - 7x$$

 $v(x,0) = x^2 - 7x$
 $v_t(x,0) = x$

3) More interestingly:

Solve

$$u_{tt} = c^{2} u_{xx}$$

$$u(0,t) = 1, u(\pi,t) = 3$$

$$u(x,0) = x^{2}$$

$$u_{t}(x,0) = x$$

IDEA: Let v(x,t) = u(x,t) - f(x)

Where f is a linear function with f(0) = 1 and $f(\pi) = 3$

$$f(x) = \left(\frac{3-1}{\pi-0}\right) \times +1 = \left(\frac{2}{\pi}\right) \times +1$$

$$v(x,t) = u(x,t) - \frac{2}{\pi} \times -1$$

$$v(0,t) = u(0,t) - 0 - 1 = 1-1 = 0$$

$$v(\pi,t) = u(\pi,t) - 2\pi - 1 = 3 - 2 - 1 = 0$$

$$v(x,0) = u(x,0) - \frac{2}{\pi} \times -1 = x^2 - \frac{2}{\pi} \times -1$$

$$v_t(x,0) = u_t(x,0)$$

=> Solve

$$\begin{cases} v_{tt} = c^2 v_{xx} \\ v(0,t) = 0, v(\pi,t) = 0 \\ v(x,0) = x^2 - 2x - 1 \\ \hline \pi \\ v_t(x,0) = x \end{cases}$$

And use
$$u(x,t) = v(x,t) + \underbrace{2x + 1}_{\pi}$$

Note: Can in theory also solve $u_x(0,t) = 1$ with $u_x(\pi,t) = 3$ because you would subtract a function whose derivative is $2 \times + 1$, but your PDE will actually become inhomogeneous! π

IV- WAVE EQUATION

What if you want to solve

$$\begin{cases} u_{tt} = c^2 u_{xx} & (0 < x < \pi) \\ u_x(0,t) = 0, u_x(\pi,t) = 0 \\ u(x,0) = x \\ u_t(x,0) = x^2 \end{cases}$$

STEPS 1 - 3: Same

STEP 4: Now we get the equation

$$T''(t) = c^2 \lambda T(t)$$

But $\lambda = -m^2$ with m = 0, 1, 2, ... (from STEP 3)

If
$$m = 0$$
, then get T''(t) = 0 => T(t) = $A_0 + B_0 + B_0$

$$u(x,t) = X(x) T(t) = (A_0 + B_0 t) cos(0x) = A_0 + B_0 t$$

If
$$m = 1, 2, ...,$$
 then get T''(t) = c^2 (-m²) T(t) = -(mc)² T(t)

$$\Rightarrow$$
 T(t) = $A_m \cos(mct) + B_m \sin(mct)$

$$u(x,t) = X(x) T(t) = [A_m cos(mct) + B_m sin(mct)] cos(mx)$$

$$(m = 1, 2, ...)$$

STEP 5: Linear combos:

$$u(x,t) = (A_0 + B_0 t) + \sum_{m=1}^{\infty} [A_m \cos(mct) + B_m \sin(mct)] \cos(mx)$$

STEP 6: Initial condition

$$u(x,0) = (A_0 + B_0 0) + \sum_{M=1}^{\infty} [A_m \cos(0) + B_m \sin(0)] \cos(mx)$$

$$x = A_0 + \sum_{M=1}^{\infty} A_m \cos(mx)$$

$$x = \sum_{M=0}^{\infty} A_m \cos(mx)$$

(This is because $A_0 = A_0 \cos(0x)$)

STEP 7: Initial velocity

$$u_{t}(x,t) = B_{0} + \sum_{m=1}^{\infty} [-A_{m} (mc) \sin(mct) + B_{m} mc \cos(mct)] \cos(mx)$$

 $u_{t}(x,0) = B_{0} + \sum_{m=1}^{\infty} [-A_{m} (mc) \sin(0) + B_{m} mc \cos(0)] \cos(mx)$

$$x^2 = B_0 + \int_{M=1}^{\infty} B_m \, mc \, cos(mx)$$

$$= B_0 + \sum_{M=1}^{\infty} B_m \cos(mx)$$

$$= \sum_{M=0}^{\infty} B_m \cos(mx) \qquad SAME PROBLEM!$$

Where
$$B_0 = B_0$$
, $B_m = B_m$ mc

So first you'd find the coefficients B_m and then you find B_m by using:

$$B_0 = B_0$$
 and $B_m = B_m / (mc)$