LECTURE 20: SEPARATION OF VARIABLES (III)

This time we'll separate variables, but with a Neumann condition
I- SETTING

Example: This time solve

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \quad(0<x<\pi) \\
u_{x}(0, t)=0, u_{x}(\pi, t)=0 \\
u(x, 0)=x
\end{array}\right.
$$

(Heat equation, but this time the velocity at the endpoints is 0)
II- SEPARATION OF VARIABLES
STEP 1: Separation of variables

1) Suppose:

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{*}
\end{equation*}
$$

2) Plug (*) into $u_{t+}=c^{2} u_{x x}$

$$
\begin{aligned}
& (X(x) T(t))_{+}=k(X(x) T(t))_{x x} \\
& X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t)
\end{aligned}
$$

3) Again, put all the T terms on one side, and all the X terms on the other side, making sure the constants go with T

$$
\frac{T^{\prime}(t)}{k T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

Like last time, this implies that everything is constant (because the left-hand-side only depends on t whereas the right-hand-side only depends on x)

$$
\begin{aligned}
& \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)}=\lambda \\
& \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\lambda \Rightarrow X^{\prime \prime}(x)=\lambda X(x)
\end{aligned}
$$

And $\frac{T^{\prime}(t)}{k T(t)}=\lambda \Rightarrow T^{\prime}(t)=k \lambda T(t)$

STEP 2: $X(X)$ equation
So far: $X^{\prime \prime}(x)=\lambda X(x)$
NEW BOUNDARY CONDITIONS

$$
\begin{aligned}
& u(x, t)=X(x) T(t) \\
& u_{x}(x, t)=(X(x) T(t))_{x}=X^{\prime}(x) T(t)
\end{aligned}
$$

$$
\begin{aligned}
& u_{x}(0, t)=X^{\prime}(0) T(t)=0 \Rightarrow \underline{X^{\prime}(0)=0} \\
& u_{x}(\pi, t)=X^{\prime}(\pi) T(t)=0 \Rightarrow X^{\prime}(\pi)=0
\end{aligned}
$$

Hence we get the ODE

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)=\lambda X(X) \\
X^{\prime}(0)=0 \\
X^{\prime}(\pi)=0
\end{array}\right.
$$

STEP 3: Boundary-value problem

Again, argue in terms of the sign of λ (but this time slightly different!)

CASE 1: $\lambda>0$

Then $\lambda=\omega^{2}$ for some $\omega>0$

Then:

$$
X^{\prime \prime}=\lambda X \Rightarrow X^{\prime \prime}=\omega^{2} X \Rightarrow X^{\prime \prime}-\omega^{2} X=0
$$

Aux: $r^{2}-\omega^{2}=0 \Rightarrow r^{2}=\omega^{2} \Rightarrow r= \pm \omega$

$$
\begin{aligned}
& \Rightarrow X(x)=A e^{\omega x}+B e^{-\omega x} \\
& \Rightarrow X^{\prime}(x)=A \omega e^{\omega x}-B \omega e^{-\omega x}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow X^{\prime}(0)=A \omega e^{\omega 0}-B \omega e^{-\omega 0}=A \omega-B \omega=(A-B) p=0 \\
& \Rightarrow B=A \\
& \text { So } X(x)=A e^{\omega x}+A e^{-\omega x} \\
& \Rightarrow X^{\prime}(x)=A \omega e^{\omega x}-A \omega e^{-\omega x} \\
& \Rightarrow X^{\prime}(\pi)=A \omega e^{\omega \pi}-A \omega e^{-\omega \pi}=A \omega\left(e^{\omega \pi}-e^{-\omega \pi}\right)=0 \\
& \Rightarrow e^{\omega \pi}-e^{-\omega \pi}=0 \\
& \Rightarrow e^{\omega \pi}=e^{-\omega \pi} \\
& \Rightarrow \omega \pi=-\omega \pi \\
& \Rightarrow \omega=0
\end{aligned}
$$

But then $\lambda=\omega^{2}=0=><=($ since we assumed $\lambda>0)$

CASE 2: $\lambda=0$

$$
\text { Then } \begin{aligned}
X^{\prime \prime}=0 X & \Rightarrow X^{\prime \prime}(x)=0 \\
& \Rightarrow X(x)=A X+B \\
& \Rightarrow X^{\prime}(x)=A
\end{aligned}
$$

$$
X^{\prime}(0)=A=0 \text {, so } A=0 \text { and } X(x)=0 x+B=B
$$

But notice that if $X(x)=B$, then automatically $X^{\prime}(\pi)=0$!
NEW: $\lambda=0$ works and $X(x)=B$ is a solution!
CASE 3: $\lambda<0$

Then $\lambda=-\omega^{2}$ for some $\omega>0$

$$
X^{\prime \prime}=\lambda X \Rightarrow X^{\prime \prime}=-\omega^{2} X \Rightarrow X^{\prime \prime}+\omega^{2} X=0
$$

Aux: $r^{2}+\omega^{2}=0 \Rightarrow r^{2}=-\omega^{2} \Rightarrow r= \pm \omega i$

$$
\begin{aligned}
X(x) & =A \cos (\omega x)+B \sin (\omega x) \\
X^{\prime}(x) & =-A \omega \sin (\omega x)+B \omega \cos (\omega x) \\
X^{\prime}(0) & =-A \omega \sin (\omega 0)+B \omega \cos (\omega 0) \\
& =-A \omega 0+B \omega 1 \\
& =B \not \varnothing=0
\end{aligned}
$$

(Cancel out ω since $\omega>0$)

$$
\Rightarrow B=0
$$

So $X(x)=A \cos (\omega x)+0 \sin (\omega x)=A \cos (\omega x)$

$$
\begin{aligned}
X^{\prime}(x) & =-A \omega \sin (\omega x) \\
X^{\prime}(\pi) & =-A \omega \sin (\pi \omega)=0 \\
& \Rightarrow \sin (\pi \omega)=0 \\
& \Rightarrow \pi \omega=\pi m \\
& \Rightarrow \omega=m \quad(m=1,2, \ldots)
\end{aligned}
$$

Answer: For every $m=1,2, \ldots$, we have a solution,

$$
X(x)=\cos (\omega x)=\cos (m x) \quad(m=1,2, \ldots)
$$

(Different from before!)

Conclusion: $\lambda=-m^{2} \quad(m=1,2, \ldots)$

$$
X(x)=\cos (m x) \quad(m=1,2, \ldots)
$$

Important remark: If you let $m=0$ in the above, you get $\lambda=-0^{2}=0$ and $X(x)=\cos (0 x)=1$, which is exactly Case 2!

NEW: Actual conclusion: $\lambda=-m^{2}(m=0,1,2, \ldots)$

$$
X(x)=\cos (m x)(m=0,1,2, \ldots)
$$

Note: That's why later we'll sum from $m=0$ to infinity instead from $m=1$ to infinity

STEP 4: T equation

$$
\begin{aligned}
& \frac{T^{\prime}}{k T}=\lambda=-m^{2} \\
& \Rightarrow T^{\prime}=-k m^{2} T \\
& \Rightarrow T(t)=C e^{-m^{\wedge} 2 k t}
\end{aligned}
$$

Note: This is also valid for $m=0, T(t)=C$

Conclusion: For every $m=0,1,2, \ldots$

$$
u(x, t)=X(x) T(t)=C e^{-m \wedge 2 k t} \cos (m x)
$$

is a solution of our PDE
STEP 5: Linearity
Take linear combos

$$
u(x, t)=\sum_{M=0}^{\infty} A_{m} e^{-m^{\wedge} 2 k t} \cos (m x)
$$

STEP 6: Initial Condition

$$
\begin{aligned}
& u(x, 0)=\sum_{M=0}^{\infty} A_{m} \underbrace{e^{-m^{\wedge} 2 k 0}}_{1} \cos (m x) \\
& x=\sum_{M=0}^{\infty} A_{m} \cos (m x)
\end{aligned}
$$

This time we have a cosine problem!!!

$$
x=\sum_{M=0}^{\infty} A_{m}^{l} \cos (m x)
$$

This time: Can you write x as a linear combo of cosines?
YES, see Chapter 5
Note: Beware: the book (and others) here use $A_{0} / 2$ instead of A_{0}, but in the end you should get the same expansion.

Next time: Actually figuring out how to calculate the coefficients! (Just based on neat linear algebra)

III- INHOMOGENEOUS PROBLEM

1) What if you had to solve?

$$
\left\{\begin{array}{l}
u_{t+}=c^{2} u_{x x} \quad(0<x<\pi) \\
u(0, t)=7, u(\pi, t)=7 \\
u(x, 0)=x^{2} \\
u_{t}(x, 0)=x
\end{array}\right.
$$

Trick: Let $\quad v(x, t)=u(x, t)-7$
Then $v_{t t}=c^{2} v_{x x}$

$$
\begin{aligned}
& v(0, t)=7-7=0 \\
& v(\pi, t)=7-7=0 \\
& v(x, 0)=x^{2}-7 \\
& v_{+}(x, 0)=u_{+}(x, 0)=x
\end{aligned}
$$

=> Solve

$$
\left\{\begin{array}{l}
v_{t+}=c^{2} v_{x x} \\
w(n+1-n,(\pi+1-n
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
v_{t+}=c^{2} v_{x x} \\
v(0, t)=0, v(\pi, t)=0 \\
v(x, 0)=x^{2}-7 \\
v_{+}(x, 0)=x
\end{array}\right.
$$

Then solve for v using the techniques from the previous lecture, and finally use
$u(x, t)=v(x, t)+7$
2) SAME with $u_{x}(0, t)=7, u_{x}(\pi, t)=7$
$v(x, t)=u(x, t)-7 x$
$v(x, 0)=x^{2}-7 x$
$v_{t}(x, 0)=x$
3) More interestingly:

Solve

$$
\begin{aligned}
& u_{t+}=c^{2} u_{x x} \\
& u(0, t)=1, u(\pi, t)=3 \\
& u(x, 0)=x^{2} \\
& u_{t}(x, 0)=x
\end{aligned}
$$

IDEA: Let $v(x, t)=u(x, t)-f(x)$
Where f is a linear function with $f(0)=1$ and $f(\pi)=3$

$$
\begin{aligned}
& f(x)=\left(\frac{3-1}{\pi-0}\right) x+1=\left(\frac{2}{\pi}\right) x+1 \\
& v(x, t)=u(x, t)-\frac{2}{\pi} x-1 \\
& v(0, t)=u(0, t)-0-1=1-1=0 \\
& v(\pi, t)=u(\pi, t)-\frac{2}{\not x} \not x-1=3-2-1=0 \\
& v(x, 0)=u(x, 0)-\frac{2}{\pi} x-1=x^{2}-\frac{2}{\pi} x-1 \\
& v+(x, 0)=u+(x, 0) \\
& \Rightarrow \text { Solve }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
v_{t+}=c^{2} v_{x x} \\
v(0, t)=0, v(\pi, t)=0 \\
v(x, 0)=x^{2}-\frac{2}{\pi} x-1
\end{array}\right.
$$

$$
v_{+}(x, 0)=x
$$

And use $u(x, t)=v(x, t)+\frac{2}{\pi} x+1$

Note: Can in theory also solve $u_{x}(0, t)=1$ with $u_{x}(\pi, t)=3$ because you would subtract a function whose derivative is $2 x+1$, but your PDE will actually become inhomogeneous! π

IV- WAVE EQUATION

What if you want to solve

$$
\left\{\begin{array}{l}
u_{t+}=c^{2} u_{x x} \quad(0<x<\pi) \\
u_{x}(0, t)=0, u_{x}(\pi, t)=0 \\
u(x, 0)=x \\
u_{t}(x, 0)=x^{2}
\end{array}\right.
$$

STEPS 1-3: Same

STEP 4: Now we get the equation
$T^{\prime \prime}(t)=c^{2} \lambda \quad T(t)$
But $\lambda=-m^{2}$ with $m=0,1,2, \ldots$ (from STEP 3)
If $m=0$, then get $T^{\prime \prime}(t)=0 \Rightarrow T(t)=A_{0}+B_{0} t$
$u(x, t)=X(x) T(t)=\left(A_{0}+B_{0} t\right) \cos (0 x)=A_{0}+B_{0} t$

If $m=1,2, \ldots$, then get $\mathrm{T}^{\prime \prime}(\dagger)=c^{2}\left(-m^{2}\right) T(t)=-(m c)^{2} T(t)$

$$
\begin{aligned}
& \Rightarrow T(t)=A_{m} \cos (m c t)+B_{m} \sin (m c t) \\
& u(x, t)=X(x) T(t)=\left[A_{m} \cos (m c t)+B_{m} \sin (m c t)\right] \cos (m x) \\
& (m=1,2, \ldots)
\end{aligned}
$$

STEP 5: Linear combos:

$$
u(x, t)=\left(A_{0}+B_{0} t\right)+\sum_{M=1}^{\infty}\left[A_{m} \cos (m c t)+B_{m} \sin (m c t)\right] \cos (m x)
$$

STEP 6: Initial condition

$$
\begin{aligned}
u(x, 0) & =\left(A_{0}+B_{0} 0\right)+\sum_{M=1}^{\infty}\left[A_{m} \cos (0)+B_{m} \sin (0)\right] \cos (m x) \\
x & =A_{0}+\sum_{M=1}^{\infty} A_{m} \cos (m x) \\
x & =\sum_{M=0}^{\infty} A_{m} \cos (m x) \quad \text { SAME PROBLEM! }
\end{aligned}
$$

(This is because $A_{0}=A_{0} \cos (0 x)$)

STEP 7: Initial velocity

$$
\begin{aligned}
& u_{t}(x, t)=B_{0}+\sum_{M=1}^{\infty}\left[-A_{m}(m c) \sin (m c t)+B_{m} m c \cos (m c t)\right] \cos (m x) \\
& u_{+}(x, 0)=B_{0}+\sum_{M=1}^{\infty}\left[-A_{m}(m c) \sin (0)+B_{m} m c \cos (0)\right] \cos (m x)
\end{aligned}
$$

$$
\begin{aligned}
x^{2} & =B_{0}+\sum_{M=1}^{\infty} B_{m} m c \cos (m x) \\
& =\overbrace{B_{0}}+\sum_{M=1}^{\infty} \overbrace{B_{m}} \cos (m x) \\
& =\sum_{M=0} \overbrace{B_{m}} \cos (m x) \quad \text { SAME PROBLEM! }
\end{aligned}
$$

Where $\overrightarrow{B_{0}}=B_{0}, \overrightarrow{B_{m}}=B_{m} m c$
So first you'd find the coefficients $\widetilde{B_{m}}$ and then you find B_{m} by using:

$$
B_{0}=\stackrel{\sim}{B_{0}} \text { and } B_{m}=\stackrel{\sim}{B_{m} /(m c)}
$$

