LECTURE 21: FOURIER SERIES (I)

Today: We're FINALLY going to solve the problem that's been bugging us for a week now!

I- PRELUDE

GOAL: Given a function $f(x)$ on $(0, \pi)$, find A_{m} such that:
$\left.f(x)=\sum_{M=1}^{\infty} A_{m}\right) \sin (m x) \quad$ (Fourier sine series)
Intuitively: Want to write f in terms of sine waves

(Sort of like a Taylor series, but with \sin instead of x^{n})
Surprisingly, we can solve this using... Linear Algebra!

II- ORTHOGONALITY

Let u, v, w be vectors (in R^{n})

Definition: u and v are orthogonal (= perpendicular) if $u \cdot v=0$
Definition: $\{u, v, w\}$ is orthogonal if any two different vectors in that set are orthogonal

IMPORTANT FACT:

Suppose $\{u, v, w\}$ is orthogonal and $x=a u+b v+c w$, then:

$$
a=\frac{x \cdot u}{u \cdot u} \quad b=\frac{x \cdot v}{v \cdot v} \quad c=\frac{x \cdot w}{w \cdot w}
$$

(AMAZING, no row-reduction required; you have explicit formulas for the coefficients)

Why?
$x \cdot u=(a u+b v+c w) \cdot u=a u \cdot u+b v / u+c w / u=@ u \cdot u$
$\Rightarrow a=\frac{x \cdot u}{u \cdot u}$
(Similar for b and c)
Analogy: x hugs $u(=x \cdot u)$ and then u is so happy that it hugs itself (= $u \cdot u$)

III- FOURIER SINE SERIES

What does orthogonality have to do with our problem?
Goal: $f(x)=\sum_{i}^{\infty} A_{m} \sin (m x)$ on $(0, \pi)$

Goal: $f(x)=\sum_{M=1} A_{m} \sin (m x)$ on $(0, \pi)$
It turns out that all the $\sin (m x)$ are orthogonal, but we first need to define the dot product of functions
Definition: $f \cdot g=\int_{0}^{\pi} f(x) g(x) d x$
Ex: $x \cdot x^{2}=\int_{0}^{\pi} x x^{2} d x=\int_{0}^{\pi} x^{3} d x=\pi^{4} / 4$
Note: Compare to usual dot product:
$(1,2,3) \cdot(4,5,6)=1 \times 4+2 \times 5+3 \times 6=$ Sum of products
Here $\int_{0}^{\pi} f(x) g(x) d x$ is an infinite sum of products
(Sum) (Product)

Fact: $\{\sin (x), \sin (2 x), \ldots\}=\{\sin (m x) \mid m=1,2, \ldots\}$ is orthogonal

Why? Just need to check $\sin (m x) \cdot \sin (n x)=0$ for $m \neq n$
That is, check $\int_{0}^{\pi} \sin (m x) \sin (n x) d x=0$ (see HW 7)
CONSEQUENCE:
In particular, if $f(x)=\sum_{M=1}^{\infty} A_{m} \sin (m x)$, by the above fact this implies:

$$
\begin{aligned}
A_{m} & =\frac{f(x) \cdot \sin (m x)}{\sin (m x) \cdot \sin (m x)} \quad(f \text { hugs } \sin (m x) \text { and } \sin (m x) \text { hugs itself) } \\
& =\int_{0}^{\pi} f(x) \sin (m x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi} \sin (m x) \sin (m x) d x \\
&= \int_{0}^{\pi} f(x) \sin (m x) d x \\
& \int_{0}^{\pi} \sin ^{2}(m x) d x \\
&= \int_{0}^{\pi} f(x) \sin (m x) d x
\end{aligned}
$$

(T)/2
(see HW $7, \pi / 2$ because $(0, \pi)$ is half the interval $(-\pi, \pi)$)
=> IMPORTANT FACT:
If $f(x)=\sum_{M=1}^{\infty} A_{m} \sin (m x)$ on $(0, \pi)$, then

$$
A_{m}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (m x) d x
$$

More generally, if $f(x)=\sum_{M=1}^{\infty} A_{m} \sin (\pi m x / l)$ on $(0,1)$ then

$$
A_{m}=\frac{2}{\ell} \int_{c}^{\ell} f(x) \sin (\pi m x / I) d x
$$

(Again, you hug f with $\sin (\pi m x / I)$ and you divide by I and don' \dagger forget about the 2)

IV - EXAMPLE
Example: Find A_{m} such that $x=\sum_{M=1}^{\infty} A_{m} \sin (m x)$ on $(0, \pi)$

$$
\begin{aligned}
A_{m} & =\frac{2}{\pi} \int_{0}^{\pi} x \sin (m x) d x \quad \begin{array}{c}
u=x \quad d v=\sin (m x) \\
\\
\end{array}=\frac{2}{\pi}\left(\left[-\frac{2 x=1}{\pi} \quad v=(-1 / m) \cos (m x)\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{\cos (m x)}{m} d x\right) \\
& =\frac{2}{\pi}\left(\frac{-\pi \cos (\pi m)+0}{m}+\left[\frac{1}{m^{2}} \sin (m x)\right]_{0}^{\pi}\right) \\
& =\frac{2}{\pi} \quad \frac{-\pi(-1)^{m}}{m} \\
& =\frac{2}{m}(-1)^{m+1} \quad \text { (Basically } 2 / m \text { but alternates) } \\
x & =2 \sin (x)-\frac{2}{2} \sin (2 x)+\frac{2}{3} \sin (3 x)-\frac{2}{4} \sin (4 x)
\end{aligned}
$$

Consequence 1: If you let $x=\pi / 2$ in the above formula, then

$$
\begin{aligned}
& \pi / 2=2 \sin (\pi / 2)-\sin (\pi)+2 / 3 \sin (3 \pi / 2)-1 / 2 \sin (2 \pi)+\ldots \\
& \pi / 2=2-2 / 3+2 / 5-2 / 7+\ldots \\
& \Rightarrow 1-1 / 3+1 / 5-1 / 7 \ldots=\pi / 4 \quad(\text { WOW!) }
\end{aligned}
$$

Consequence 2:
Solve $\quad\left\{\begin{array}{l}u_{t}=k u_{x x} \quad 0<x<\pi \\ u(0, t)=u(\pi, t)=0 \\ u(x, 0)=x\end{array}\right.$
So far, got: $u(x, t)=\sum_{m=1}^{\infty} A_{m} e^{-m^{2} k t} \sin (m x)$

$$
\begin{aligned}
& u(x, 0)=\sum_{M=1}^{\infty} A_{m} \sin (m x)^{M=1}=x \\
& A_{m}=2 / m \quad(-1)^{m+1}
\end{aligned}
$$

Solution: $u(x, t)=\sum_{M=1}^{\infty} 2 / m(-1)^{m+1} e^{-m^{2} k t} \sin (m x)$

V- DI METHOD

In practice, it's a pain to calculate the coefficients, except there's an NEAT method to deal with this :)
Example: $x^{2}=\sum_{M=1}^{\infty} A_{m} \sin (m x)$ on $(0, \pi)$

$$
A_{m}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \sin (m x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \sin (m x) d x
$$

DI METHOD:

1. Make sign-table starting with + (and alternate signs)
2. Put x^{2} on left-hand-side and differentiate the hell out of that until you get 0
3. Put $\sin (\pi m x)$ on the right-hand-side and anti-differentiate the hell out of that

$$
\left.\begin{array}{l}
A_{m}=\frac{2}{\pi}\left[+x^{2}(-\cos (m x) / m)-2 x\left(-\sin (m x) / m^{2}\right)+2 \cos (m x) / m^{3}\right]_{0}^{\pi} \\
=\frac{2}{\pi} \quad-\pi^{2}(-\cos (\pi m) / m)+2 \pi \sin (\pi m) / m^{2}+2 \cos (\pi m) / m^{3}
\end{array}\right] \begin{aligned}
& =\frac{2}{\pi}\left(-\pi^{2}(-1)^{m} / m+2(-1)^{m} / m^{3}-2 / m^{3}\right) \\
& =2 \pi(-1)^{m+1} / m+4 / \pi\left(m^{3}\right)\left((-1)^{m}-1\right) \\
& = \begin{cases}-2 \pi / m & \text { if } m \text { is even } \\
2 \pi / m-8 / \pi\left(m^{3}\right) & \text { if } m \text { is odd }\end{cases}
\end{aligned}
$$

