LECTURE 21: FOURIER SERIES (I)

Thursday, November 14, 2019 1:47 PM

Today: We're FINALLY going to solve the problem that's been bugging us for a week now!

I- PRELUDE

GOAL: Given a function f(x) on $(0,\pi)$, find A_m such that:

$$f(x) = \sum_{M=1}^{\infty} (A_m) \sin(mx)$$
 (Fourier sine series)

Intuitively: Want to write f in terms of sine waves

(Sort of like a Taylor series, but with sin instead of x^n)

Surprisingly, we can solve this using... Linear Algebra!

II- ORTHOGONALITY

Let u, v, w be vectors (in R^n)

Definition: u and v are orthogonal (= perpendicular) if $u \cdot v = 0$

Definition: {u,v,w} is orthogonal if any two different vectors in that set are orthogonal

IMPORTANT FACT:

Suppose $\{u,v,w\}$ is orthogonal and x = a u + b v + c w, then:

$$a = \underbrace{x \cdot u}$$
 $b = \underbrace{x \cdot v}$ $c = \underbrace{x \cdot w}$ $w \cdot w$

(AMAZING, no row-reduction required; you have explicit formulas for the coefficients)

Why?

why?

$$x \cdot u = (\alpha u + bv + cw) \cdot u = \alpha u \cdot u + b v / u + c w / u = \alpha u \cdot u$$

(Similar for b and c)

Analogy: \times hugs u (= $\times \cdot$ u) and then u is so happy that it hugs itself (= u·u)

III- FOURIER SINE SERIES

What does orthogonality have to do with our problem?

Goal:
$$f(x) = \int_{-\infty}^{\infty} A_m \sin(mx)$$
 on $(0,\pi)$

Goal:
$$f(x) = \sum_{M=1}^{n} A_m \sin(mx)$$
 on $(0,\pi)$

It turns out that all the sin(mx) are orthogonal, but we first need to define the dot product of functions

Definition:
$$f \cdot g = \int_{0}^{\pi} f(x) g(x) dx$$

Ex: $x \cdot x^{2} = \int_{0}^{\pi} x^{2} dx = \int_{0}^{\pi} x^{3} dx = \pi^{4}/4$

Note: Compare to usual dot product:

$$(1,2,3) \cdot (4,5,6) = 1 \times 4 + 2 \times 5 + 3 \times 6 =$$
Sum of products

Here $\int_{0}^{\pi} f(x) g(x) dx$ is an infinite sum of products

(Sum) (Product)

Fact:
$$\{\sin(x), \sin(2x), ...\} = \{\sin(mx) \mid m = 1, 2, ...\}$$
 is orthogonal

Why? Just need to check $sin(mx) \cdot sin(nx) = 0$ for $m \neq n$

That is, check $\int_{0}^{\pi} \sin(mx) \sin(nx) dx = 0$ (see HW 7)

CONSEQUENCE:

In particular, if
$$f(x) = \int_{M=1}^{\infty} A_m \sin(mx)$$
, by the above fact this implies:

$$A_m = \underbrace{f(x) \cdot \sin(mx)}_{\sin(mx)} \quad \text{(f hugs } \sin(mx) \text{ and } \sin(mx) \text{ hugs itself)}$$

$$= \int_{M}^{\infty} f(x) \sin(mx) dx$$

$$\int_{0}^{\pi} \sin(mx) \sin(mx) dx$$

$$= \int_{0}^{\pi} f(x) \sin(mx) dx$$

$$\sin^2(mx) dx$$

$$= \int_{0}^{\pi} f(x) \sin(mx) dx$$

$$\frac{\pi}{2}$$

(see HW 7, $\pi/2$ because (0, π) is half the interval (- π , π))

=> IMPORTANT FACT:

If
$$f(x) = \sum_{m=1}^{\infty} A_m \sin(mx)$$
 on $(0,\pi)$, then

$$A_{m} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(mx) dx$$

More generally, if
$$f(x) = A_m \sin(\pi m x/l)$$
 on (0,1) then
$$A_m = \frac{2}{\sqrt{2}} \int_0^{\sqrt{2}} f(x) \sin(\pi m x/l) dx$$

$$A_{m} = \frac{2}{2} \int_{0}^{2} f(x) \sin(\pi m x/1) dx$$

(Again, you hug f with $sin(\pi m \times / l)$ and you divide by l and don't forget about the 2)

IV - EXAMPLE

Example: Find A_m such that $x = \int_{M=1}^{\infty} A_m \sin(mx)$ on $(0,\pi)$

$$A_{m} = \underbrace{2}_{\pi} \int_{0}^{\pi} x \sin(mx) dx \qquad u = x \qquad dv = \sin(mx)$$

$$du = 1 \qquad v = (-1/m) \cos(mx)$$

$$= \underbrace{2}_{\pi} \left(\begin{bmatrix} -x \cos(mx) \\ m \end{bmatrix}_{0}^{\pi} + \int_{0}^{\pi} \frac{\cos(mx) dx}{m} dx \right)$$

$$= \underbrace{2}_{\pi} \left(\frac{-\pi \cos(\pi m) + 0}{m} + \left(\frac{1}{m^{2}} \sin(mx) \right)_{0}^{\pi} \right)$$

$$= \underbrace{2}_{\pi} \underbrace{-\pi(-1)^{m}}_{m}$$

=
$$\frac{2}{m}$$
 (Basically 2/m but alternates)

$$x = 2 \sin(x) - 2 \sin(2x) + 2 \sin(3x) - 2 \sin(4x)$$

 $2 \qquad 3 \qquad 4$

Consequence 1: If you let $x = \pi/2$ in the above formula, then

$$\pi/2 = 2 \sin(\pi/2) - \sin(\pi) + 2/3 \sin(3\pi/2) - 1/2 \sin(2\pi) + ...$$

 $\pi/2 = 2 - 2/3 + 2/5 - 2/7 + ...$

$$\Rightarrow$$
 1 - 1/3 + 1/5 - 1/7 ... = π /4 (WOW!)

Consequence 2:

Solve
$$\begin{cases} u_t = k u_{xx} & 0 < x < \pi \\ u(0,t) = u(\pi,t) = 0 \\ u(x,0) = x \end{cases}$$

So far, got:
$$u(x,t) = \sum_{m=1}^{2} A_m e^{-m^2 kt} \sin(mx)$$

$$u(x,0) = \sum_{m=1}^{2} A_m \sin(mx) = x$$

$$A_{\rm m} = 2/{\rm m} (-1)^{{\rm m}+1}$$

$$A_{m} = 2/m (-1)^{m+1}$$

Solution: $u(x,t) = \sum_{M=1}^{2} 2/m (-1)^{m+1} e^{-m^{2} kt} \sin(mx)$

V- DI METHOD

In practice, it's a pain to calculate the coefficients, except there's an NEAT method to deal with this :)

Example:
$$x^2 = \int_{M=1}^{\infty} A_m \sin(mx)$$
 on $(0,\pi)$

$$A_{m} = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \sin(mx) dx = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \sin(mx) dx$$

DI METHOD:

1. Make sign-table starting with + (and alternate signs)

- 2. Put x^2 on left-hand-side and differentiate the hell out of that until you get 0
- 3. Put $sin(\pi mx)$ on the right-hand-side and anti-differentiate the hell out of that

$$A_{m} = \frac{2}{\pi} \left[+x^{2} \left(-\cos(mx)/m \right) - 2x \left(-\sin(mx)/m^{2} \right) + 2\cos(mx)/m^{3} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left(\pi^{2} \left(-\cos(\pi m)/m \right) + 2\pi \sin(\pi m)/m^{2} + 2\cos(\pi m)/m^{3} \right)$$

$$= \frac{2}{\pi} \left(-\pi^{2} \left(-1 \right)^{m}/m + 2 \left(-1 \right)^{m}/m^{3} - 2/m^{3} \right)$$

$$= 2\pi \left(-1 \right)^{m+1}/m + 4/\pi \left(m^{3} \right) \left((-1)^{m} - 1 \right)$$

$$= \begin{cases} -2\pi/m & \text{if m is even} \\ 2\pi/m - 8/\pi \left(m^{3} \right) & \text{if m is odd} \end{cases}$$