LECTURE 24: LAPLACE'S EQUATION

Welcome to the final equation of our course: Laplace's Equation! This is a PDE with lots of nice properties and miracles, and will take you all the way up to 112 B .

Today: As our $4^{\text {th }}$ example of separation of variables, let's separate variables with Laplace's equation

I- SETTING

Here $u=u(x, y)$
(no more time dependence, but instead have boundary conditions)
Example: This time solve
$\begin{cases}u_{x x}+u_{y y}=0 & (0<x<\pi, 0<y<1) \\ u(0, y)=0 & u(\pi, y)=0 \\ u(x, 0)=x & u(x, 1)=3\end{cases}$

Picture:

Interpretation: $u(x, y)$ is the temperature of a 2D metal plate at (x, y), but after a looooong time (think heat equation but with $u_{t}=0$)

II- SEPARATION OF VARIABLES

STEP 1: Separation of variables

1) Suppose:

$$
\begin{equation*}
u(x, y)=X(x) Y(y) \tag{*}
\end{equation*}
$$

2) Plug (*) into $u_{x x}+u_{y y}=0$
$(X(x) Y(y))_{x x}+(X(x) Y(y))_{y y}=0$
$X^{\prime \prime}(x) Y(y)+X(x) y^{\prime \prime}(y)=0$
$X^{\prime \prime}(x) Y(y)=-X(x) y^{\prime \prime}(y)$
$\frac{X^{\prime}(x)}{X(x)}=-\frac{y^{\prime \prime}(y)}{Y(y)}=\lambda$
$\Rightarrow X^{\prime \prime}(x)=\lambda X(x)$
And $Y^{\prime \prime}(y)=-\lambda Y(y)$

STEP 2: $X(x)$ equation

Warning: You don' \dagger always choose the X equation here, you have to pick one the one with 0 boundary conditions!

Here $u(0, y)=0$ and $u(\pi, y)=0$ suggests you choose X (see below). Sometimes have to pick Y

So far: $X^{\prime \prime}(x)=\lambda X(x)$
Now use the boundary conditions:
$u(0, y)=0 \Rightarrow x(0) y(y)=0 \Rightarrow \underline{x(0)}=0$
Similarly $u(\pi, y)=0 \Rightarrow X(\pi) y(y)=0 \Rightarrow X(\pi)=0$
Hence we get the ODE
$\left\{\begin{array}{l}X^{\prime}(x)=\lambda X(x) \\ X(0)=0 \\ X(\pi)=0\end{array}\right.$

STEP 3: 3 CASES

SKIP
Conclusion: $\lambda=-m^{2}(m=1,2, \ldots)$
$X(x)=\sin (m x) \quad(m=1,2, \ldots)$
WARNING: Sometimes λ might be $-\lambda$
(depending on whether you're dealing with X or Y)
In any case, at the end, you should get \sin or cos

STEP 4: Y equation

$$
\begin{aligned}
& y^{\prime \prime}=-\lambda y \\
& \Rightarrow y^{\prime \prime}=-(-m)^{2} y
\end{aligned}
$$

$\Rightarrow y^{\prime \prime}=m^{2} y \quad\left(r^{2}=m^{2} \Rightarrow r= \pm m\right)$
$\Rightarrow Y(y)=A e^{m y}+B e^{-m y}$

NEW!!!!

For the wave equation we got $A \cos (m c t)+B \sin (m c t)$ and what was nice is that for $t=0$ we had $A(1)+B(0)=A$. It would be great if we had functions with a similar feature:

$$
\text { Recall: } \cosh (x)=\frac{e^{x}+e^{-x}}{2} \text { and } \sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

Cosh and sinh are just linear combinations of exponential functions. So any linear combo of e^{x} and e^{-x} is also a linear combo of $\cosh (x)$ and $\sinh (x)$:
$A e^{x}+B e^{-x}=A(\cosh (x)+\sinh (x))+B(\cosh (x)-\sinh (x))$

$$
=(A+B) \cosh (x)+(A-B) \sinh (x)
$$

$$
=\widetilde{A} \cosh (x)+\widetilde{B} \sinh (x)
$$

Upshot: $Y(y)=A e^{m y}+B e^{-m y}=\widetilde{A} \cosh (m y)+\vec{B} \sinh (m y)$ for different (but still arbitrary) $\underset{A}{ }$ and \vec{B}

Conclusion: For every $m=1,2, \ldots$
$u(x, y)=X(x) Y(y)=(A \cosh (m y)+B \sinh (m y)) \sin (m x)$ is a solution of our PDE

STEP 5: Linearity

$$
u(x, y)=\sum_{M=1}^{\infty}\left[A_{m} \cosh (m y)+B_{m} \sinh (m y)\right] \sin (m x)
$$

STEP 6: Remaining boundary conditions

Use $u(x, 0)=x$ and $u(x, 1)=3$

$$
\begin{aligned}
u(x, 0) & =\sum_{M=1}^{\infty}[A_{m} \underbrace{\cosh (m 0)}_{1}+B_{m} \sinh (m 0)] \sin (m x) \\
x & =\sum_{M=1}^{\infty} A_{m} \sin (m x) \text { on }(0, \pi)
\end{aligned}
$$

(Again, notice how elegant it is! If we didn't choose cosh and sinh, we could have a mess with exponential functions)
(Before we were stuck, but now we're Fourierxperienced)

$$
A_{m}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (m x) d x=\ldots=\frac{2}{m}(-1)^{m}
$$

STEP 7: $u(x, 1)=3$

$$
u(x, 1)=\sum_{M=1}^{\infty}\left[A_{m} \cosh (m 1)+B_{m} \sinh (m 1)\right] \sin (m x)
$$

$$
\begin{aligned}
& =\sum_{M=1}^{\infty}[\underbrace{A_{m} \cosh (m)+B_{m} \sinh (m)}_{\widehat{B_{M}}}] \sin (m x) \\
& =\sum_{M=1}^{\infty} \overbrace{B_{m}} \sin (m x)=3
\end{aligned}
$$

Where $\widetilde{B}_{m}=A_{m} \cosh (m)+B_{m} \sinh (m)$

$$
\begin{aligned}
\vec{B}_{m} & =\frac{2}{\pi} \int_{0}^{\pi} 3 \sin (m x) d x \\
& =\frac{2}{\pi}\left[\frac{-3 \cos (m x)}{m}\right]_{0}^{\pi} \\
& =\frac{2}{\pi} \frac{3}{m}[-\cos (\pi m)+1] \\
& =\frac{6}{\pi m}
\end{aligned}
$$

(= 0 if m is even, $12 /(\pi m)$ if m is odd)

So $A_{m} \cosh (m)+B_{m} \sinh (m)=6 / \pi m \quad\left[(-1)^{m+1}+1\right]$

$$
\Rightarrow B_{m}=\frac{(6 / \pi m)\left[(-1)^{m+1}+1\right]-A_{m}}{\sinh (m)} \cosh (m)
$$

$$
=\frac{(6 / \pi m)\left[(-1)^{m+1}+1\right]-(2 / m)(-1)^{m} \cosh (m)}{\sinh (m)}
$$

STEP 8: CONCLUSION

$$
u(x, y)=\sum_{M=1}^{\infty}\left[A_{m} \cosh (m y)+B_{m} \sinh (m y)\right] \sin (m x)
$$

$$
\begin{aligned}
A_{m} & =\frac{2}{m}(-1)^{m} \\
B_{m} & =\frac{(6 / \pi m)\left[(-1)^{m+1}+1\right]+(2 / m)(-1)^{m+1} \cosh (m)}{\sinh (m)} \\
& = \begin{cases}-(2 / m) \operatorname{coth}(m) & \text { if } m \text { even } \\
12 /(\pi m) \operatorname{csch}(m)+(2 / m) \operatorname{coth}(m) & \text { if } m \text { odd }\end{cases}
\end{aligned}
$$

Interpretation: Temperature oscillates in the x direction (because of $\sin (m x)$ term) but is grows/decays exponentially in the y direction (because of cosh and sinh terms)

III- VARIATIONS

Example:

$$
\begin{cases}u_{x x}+u_{y y}=0 & \\ u(0, y)=y & u(\pi, y)=y^{2} \\ u(x, 0)=x^{3} & u(x, 1)=x^{4}\end{cases}
$$

Oh no! None of the terms are 0 !

Trick: Solve

$$
\left\{\begin{array} { l }
{ v _ { x x } + v _ { y y } = 0 \quad } \\
{ v (0 , y) = 0 \quad v (\pi , y) = 0 } \\
{ v (x , 0) = x ^ { 3 } \quad v (x , 1) = x ^ { 4 } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
w_{x x}+w_{y y}=0 \\
w(0, y)=y \quad w(\pi, y)=y^{2} \\
w(x, 0)=0 \quad w(x, 1)=0
\end{array}\right.\right.
$$

Picture:

Solve those separately, and then use $u=v+w$
(Note: For v equation, you do X first just like above, but for w equation you do Y first!)

Example: (Optional) Can in theory also solve

$$
u_{x x}+u_{y y}+u_{z z}=0
$$

But beyond the scope of this course (might be done in 112B)
Get for instance (depending on boundary conditions)

$$
\begin{aligned}
u(x, y, z) & =\sum_{M, N=1}^{\infty} A_{m n} \sinh \left(\sqrt{m^{2}+n^{2}} x\right) \sin (m y) \sin (n z) \\
A_{m n} & =\int_{0}^{\pi} \int_{0}^{\pi} \frac{f(y, z)(\sin (m y) \sin (n z)) d y d z \quad \text { (Hugging) }}{\pi} \int_{0}^{\pi} \int_{0}^{(\sin (m y) \sin (n z))^{2} d y d z} \\
& =\left(\frac{2}{\pi}\right)_{0}^{2} \int_{0}^{\pi \pi} f(y, z) \sin (m y) \sin (n z) d y d z
\end{aligned}
$$

(DOUBLE Fourier series, WHOA)

