LECTURE 25 - FUNDAMENTAL SOLUTION OF LAPLACE

Friday, November 22, 2019 7:28 PM

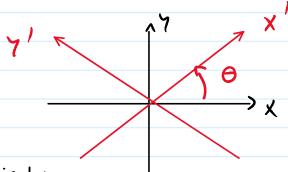
Today: Derive the fundamental solution of Laplace's equation (just like we did for the heat equation).

I- ROTATION INVARIANCE

Suppose u = u(x,y) solves $u_{xx} + u_{yy} = 0$ on R^2

Important Fact: u is invariant under rotations

That is, if you rotate the plane by θ radians, then u (in the new variables) still solves Laplace's equation



More precisely:

Let θ be fixed (think $\theta = \pi/4$) and define:

$$\begin{cases} x' = \cos(\theta) x - \sin(\theta) y \\ y' = \sin(\theta) x + \cos(\theta) y \end{cases}$$

Then
$$u_{x'x'} + u_{y'y'} = u_{xx} + u_{yy} = 0$$

Why? Use the Chen Lu!

$$u_{x} = \frac{\partial U}{\partial x'} \frac{\partial x}{\partial x'} + \frac{\partial U}{\partial y'} \frac{\partial y'}{\partial x}$$

$$= u_{x'} \cos(\theta) + u_{y'} \sin(\theta) \qquad (*)$$

$$u_{xx} = \frac{\partial U_x}{\partial x}$$

$$= \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} \frac{\partial x}{\partial y}$$

=
$$(u_{x'} \cos(\theta) + u_{y'} \sin(\theta))_{x'} \cos(\theta) + (u_{x'} \cos(\theta) + u_{y'} \sin(\theta))_{y'} \sin(\theta)$$
 (θ is FIXED)

$$= \mathsf{u}_{\mathsf{x}'\mathsf{x}'} \cos^2(\theta) + 2 \; \mathsf{u}_{\mathsf{x}'\mathsf{y}'} \cos(\theta) \sin(\theta) + \mathsf{u}_{\mathsf{y}'\mathsf{y}'} \sin^2(\theta)$$

Similarly:

$$u_{yy} = u_{x'x'} \sin^2(\theta) - 2u_{x'y'} \cos(\theta) \sin(\theta) + u_{y'y'} \cos^2(\theta)$$

Therefore:

$$u_{xx} + u_{yy} = u_{x'x'} (\cos^2(\theta) + \sin^2(\theta)) + 2 u_{x'y'} \cos(\theta) \sin(\theta)$$

$$-2u_{x'y'} \cos(\theta) \sin(\theta) + u_{y'y'} (\sin^2(\theta) + \cos^2(\theta))$$

$$= u_{x'x'} + u_{y'y'}$$

Hence
$$u_{x'x'} + u_{y'y'} = u_{xx} + u_{yy} = 0$$

Note:

- 1) This is also true in higher dimensions, if you replace rotations by orthogonal matrices ($O^TO = I$)
- 2) Therefore, it is natural to look for radial solutions, that is, solutions of the form u(x,y) = v(r) with $r = \sqrt{x^2 + y^2}$ (see HW 8), but we'll pursue a different way

II- POLAR COORDINATES

Instead, we will use a coordinate system that is natural for rotations... polar coordinates!

Problem: Suppose you define

$$\begin{cases} x = r \cos(\theta) \\ y = r \sin(\theta) \end{cases} \Rightarrow \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = tan^{-1}(y/x) \end{cases}$$

Then what does $u_{xx} + u_{yy} = 0$ become in terms of r and θ ?

Again, use the Chen Lu!

Note:
$$r = \sqrt{x^2 + y^2}$$
, so

$$\frac{\partial \Gamma}{\partial x} = \frac{2x}{2\sqrt{x^2+y^2}} = \frac{x}{\Gamma} = \frac{x \cos(\theta)}{P} = \cos(\theta)$$

$$\frac{\partial \Gamma}{\partial x} = \cos(\theta)$$

Similarly:

$$\frac{\partial \lambda}{\partial L} = 2in(\theta)$$

And using $\theta = \tan^{-1}(y/x)$, have

$$\frac{9\lambda}{9\Theta} = \frac{L}{\cos(\Theta)}$$

$$\frac{9x}{9\Theta} = \frac{L}{\sin(\Theta)}$$

Now we are ready to Chen Lu!

 $u_{xx} = (u_x)_x$

$$u_{x} = \frac{\partial U}{\partial x}$$

$$= \frac{\partial U}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial U}{\partial e} \frac{\partial e}{\partial x}$$

$$= u_{r} \cos(\theta) + u_{\theta} \left(-\frac{\sin(\theta)}{r} \right)$$

$$= \frac{\partial U_{x}}{\partial \Gamma} \frac{\partial \Gamma}{\partial x} + \frac{\partial U_{x}}{\partial \Theta} \frac{\partial \Theta}{\partial x}$$

$$= \left(\frac{U_{r} \cos(\theta) - U_{\theta} \sin(\theta)}{\Gamma} \right) - \cos(\theta) + \left(\frac{U_{r} \cos(\theta) - U_{\theta} \sin(\theta)}{\Gamma} \right) - \frac{\sin(\theta)}{\Gamma}$$

$$= A + B$$

WARNING: Here r and θ are NOT fixed, so have to use the

Product rule!

$$A = \begin{pmatrix} u_{rr} \cos(\theta) - u_{\theta r} \sin(\theta) + u_{\theta} \sin(\theta) \\ r & r^2 \end{pmatrix} \cos(\theta)$$

=
$$u_{rr} \cos^2(\theta) - u_{r\theta} \frac{\sin(\theta)\cos(\theta)}{r} + u_{\theta} \frac{\sin(\theta)\cos(\theta)}{r^2}$$

$$B = \begin{pmatrix} u_{r\theta} \cos(\theta) - u_{r} \sin(\theta) - u_{\theta\theta} \frac{\sin(\theta)}{r} - u_{\theta} \frac{\cos(\theta)}{r} \end{pmatrix} \begin{pmatrix} -\frac{\sin(\theta)}{r} \end{pmatrix}$$

$$= - u_{r\theta} \frac{\cos(\theta)\sin(\theta)}{r} + u_{r} \frac{\sin^{2}(\theta)}{r} + u_{\theta\theta} \frac{\sin^{2}(\theta)}{r^{2}} + u_{\theta} \frac{\sin(\theta)\cos(\theta)}{r^{2}}$$

$$A + B$$

=
$$u_{rr} \cos^2(\theta) - u_{r\theta} \frac{\sin(\theta)\cos(\theta)}{\cos(\theta)} + u_{\theta} \frac{\sin(\theta)\cos(\theta)}{\cos(\theta)}$$

$$r r^2$$

$$- u_{r\theta} \frac{\cos(\theta)\sin(\theta)}{\sin(\theta)} + u_{r} \frac{\sin^{2}(\theta)}{\sin^{2}(\theta)} + u_{\theta\theta} \frac{\sin^{2}(\theta)}{\sin^{2}(\theta)} + u_{\theta} \frac{\sin(\theta)\cos(\theta)}{\sin^{2}(\theta)}$$

$$r \qquad r \qquad r^{2} \qquad r^{2}$$

=
$$u_{rr} \cos^2(\theta) - 2u_{r\theta} \frac{\sin(\theta)\cos(\theta)}{\sin(\theta)\cos(\theta)} + 2u_{\theta} \frac{\sin(\theta)\cos(\theta)}{\sin(\theta)\cos(\theta)} + u_{r} \frac{\sin^2(\theta)}{\sin^2(\theta)} + u_{\theta\theta} \frac{\sin^2(\theta)}{\sin^2(\theta)}$$

Similar formula for u_{yy} (see below)

Combine:

$$u_{xx} + u_{yy} =$$

$$u_{rr} \cos^{2}(\theta) - 2u_{r\theta} \frac{\sin(\theta)\cos(\theta)}{\cos(\theta)} + 2u_{\theta} \frac{\sin(\theta)\cos(\theta)}{\cos(\theta)} + u_{r} \frac{\sin^{2}(\theta)}{r} + u_{\theta\theta} \frac{\sin^{2}(\theta)}{r^{2}} + \frac{\sin^{2}(\theta$$

$$u_{rr} \sin^{2}(\theta) + 2u_{r\theta} \frac{\sin(\theta)\cos(\theta)}{r} - 2u_{\theta} \frac{\sin(\theta)\cos(\theta)}{r} + u_{r} \frac{\sin^{2}(\theta)}{r} + u_{\theta\theta} \frac{\cos^{2}(\theta)}{r^{2}}$$

$$= u_{rr} + \underline{u_r} + \underline{u_{\theta\theta}}$$

$$r$$

FACT: [POLAR LAPLACE] (DO NOT MEMORIZE)

$$u_{xx} + u_{yy} = u_{rr} + \underline{u_r} + \underline{u_{\theta\theta}}$$

In particular, Laplace's equation in polar coordinates becomes

$$\frac{\mathbf{u}_{rr} + \underline{\mathbf{u}_r}}{\mathbf{r}} + \underline{\mathbf{u}_{\theta\theta}} = 0 \quad (*)$$

III- FUNDAMENTAL SOLUTION

How to obtain a solution from this?

If u is radial, then $u_{\theta} = 0$, so $u_{\theta\theta}$ = 0, and (*) becomes:

$$u_{rr} + \underline{u_r} = 0 \text{ (an ODE!)}$$

$$\frac{u_{rr}}{u_r} = \frac{-1}{r}$$

$$(\ln |u_r|)' = -1/r$$

$$\Rightarrow \ln |u_r| = - \ln (r) + C$$

=>
$$|u_r| = e^{-\ln(r) + C} = \frac{e^C}{e^{\ln(r)}}$$

=>
$$u_r = \frac{+/-e^C}{r} = \frac{C}{r}$$

$$\Rightarrow$$
 u = C ln(r) + C'

$$u(x,y) = C \ln(\sqrt{x^2 + y^2}) + C' \text{ solves } u_{xx} + u_{yy} = 0$$

(do NOT memorize)

Aside: It turns out that, among all of them, there is one of them is most important namely the one with $C = -1/(2\pi)$ and C' = 0

$$S(x,y) = -\frac{1}{2\pi} \ln(\sqrt{x^2 + y^2})$$
 is the fundamental solution of $u_{xx} + u_{yy} = 0$

Why fundamental? Because can build up other solutions from this!

Fun Fact: A solution of $u_{xx} + u_{yy} = -f(x,y)$ is

$$u(x,y) = S(x,y) * f(x,y) = \iint_{\mathbb{R}^{2}} S(x-s,y-t) f(s,t) ds dt$$

(Basically the constant is chosen such that $S_{xx} + S_{yy} = -\delta_0$)

Note: Not all solutions are radial!

Example: $u(x,y) = x^2 - y^2$ solves $u_{xx} + u_{yy} = 0$, but isn't radial!