LECTURE 17: EIGENVALUES AND EIGENVECTORS

Today: Will cover an important topic called eigenvalues and eigenvectors. It's not clear at first why it's useful, but you'll see in a couple of lectures why it's so useful. By the way, the only reason Google exists is because of eigenvalues!

I- MOTIVATION

Example: Consider $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Then:

$$
\underbrace{\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{V}=\left[\begin{array}{l}
7 \\
7
\end{array}\right]=\underbrace{7}_{\lambda}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

In other words, if you apply A to this specific vector v, you don' \dagger just get a random vector, but a multiple of v

Definition: If $A v=\lambda v$ for some $v \neq 0$, then:

1) λ is an eigenvalue of A
2) v is an eigenvector of A (corresponding to λ)

Example: In the above example:
$\lambda=7$ is an eigenvalue of A and
$v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector corresponding to $\lambda=7$
Example: $A=\left[\begin{array}{ll}7 & -3 \\ 10 & -4\end{array}\right] \quad v=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

$$
A v=\left[\begin{array}{cc}
7 & -3 \\
10 & -4
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
6 \\
10
\end{array}\right]=2\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\lambda v
$$

$\lambda=2$ is an eigenvalue and $v=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ is an eigenvector
BUT
$\left[\begin{array}{l}7 \\ -3 \\ 10\end{array}-4\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}11 \\ 15\end{array}\right] \neq \lambda\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad($ for any $\lambda)$
$A v \neq \lambda v$, so $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is not an eigenvector of A

Note: Eigenvectors are really special vectors

Geometric Interpretation:
$A v=\lambda v \Rightarrow$ Both $A v$ and v lie on the same line

Picture:

Eigenvector

Not eigenvector

So eigenvectors are very special! In physics, eigenvectors usually indicate a resonance effect, as in the first picture above

II- FINDING EIGENVALUES

Example: Find all the eigenvalues of $A=\left[\begin{array}{cc}0 & 6 \\ -1 & 5\end{array}\right]$

Motivation: Suppose $A v=\lambda v(v \neq 0)$
$A v=\lambda v$
$\Leftrightarrow \Delta \lambda v-A v=0$
<=> $(\lambda I-A) v=0$
(have to put I because you cant subtract a number from a matrix)
$\Leftrightarrow v \neq 0$ is in $\operatorname{Nul}(\lambda I-A)$
$\Leftrightarrow>(\lambda I-A)$ is not invertible (" $A x=0$ " has a nonzero solution)
$\Leftrightarrow \operatorname{det}(\lambda I-A)=0$
FACT: λ is an eigenvalue of $A \Leftrightarrow \operatorname{det}(\lambda I-A)=0$

Note:

1) $\operatorname{det}(\lambda I-A)$ is called the characteristic equation of A, helps us find λ
2) Mnemonic: $\operatorname{det}(\lambda I-A)$ sounds like λ IA
3) Totally fine to use $A-\lambda I$, but this is better because you'll make fewer sign mistakes.

Here:
$A=\left[\begin{array}{cc}0 & 6 \\ -1 & 5\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0 & 6 \\
-1 & 5
\end{array}\right] \\
& =\left|\begin{array}{cc}
\lambda & -6 \\
1 & \lambda-5
\end{array}\right|
\end{aligned}
$$

(BASICALLY: Put λ on diagonal and put minus signs on all the entries of A)

$$
\begin{aligned}
& =\lambda(\lambda-5)+6 \\
& =\lambda^{2}-5 \lambda+6 \quad \text { (Characteristic equation) } \\
& =(\lambda-2)(\lambda-3) \\
& =0
\end{aligned}
$$

$\Rightarrow \lambda=2$ and $\lambda=3$
Example: Find the eigenvalues of $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{cc}
\lambda-1 & -6 \\
-5 & \lambda-2
\end{array}\right| \quad \begin{array}{c}
\text { (again, put } \lambda \text { on diagonal, } \\
\text { and minus everything) }
\end{array} \\
& =(\lambda-1)(\lambda-2)-30 \\
& =\lambda^{2}-3 \lambda+2-30 \\
& =\lambda^{2}-3 \lambda-28 \\
& =(\lambda-7)(\lambda+4) \\
& =0
\end{aligned}
$$

$$
\Rightarrow \lambda=7 \text { and } \lambda=-4
$$

III- FINDING EIGENVECTORS

Example: "Find the eigenvectors" of $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

Back to: $A v=\lambda v \Leftrightarrow \quad v(\lambda I-A) v=0 \Leftrightarrow \quad v$ is in $\operatorname{Nul}(\lambda I-A)$

STRATEGY: For each λ you found, find $\operatorname{Nul}(\lambda I-A)$

Found: $\lambda=7$ and $\lambda=-4$

$$
\lambda=7
$$

$$
\begin{aligned}
\operatorname{Nul}(7 I-A) & =\operatorname{Nul}\left[\begin{array}{cc}
7-1 & -6 \\
-5 & 7-2
\end{array}\right] \quad \begin{array}{l}
\text { (plug in the } \\
\text { with } \lambda=7)
\end{array} \\
& =\operatorname{Nul}\left[\begin{array}{rr}
6 & -6 \\
-5 & 5
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \quad \text { (MUST use RREF) } \\
{\left[\begin{array}{ll}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]=>x-y=0 \Rightarrow x=y \\
v & =\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
x
\end{array}\right]=x\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$ (plug in the above, but

So $\operatorname{Nul}(7 I-A)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
$\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right\}\right.$ is a basis for the set of eigenvectors corresponding to $\lambda=7$
Eigenspace of $\lambda=7$

Eigenspace of $\lambda=7$

Note: Why do we get so many eigenvectors? Because if v is an eigenvector, so is any multiple of v ! (anything on the same line as v is still an eigenvector)

$$
\begin{align*}
& \lambda=-4 \\
& \operatorname{Nul}(-4 I-A)
\end{align*}=\operatorname{Nul}\left[\begin{array}{cc}
-4-1 & -6 \\
-5 & -4-2
\end{array}\right]
$$

$(\Rightarrow x+6 / 5 y=0 \Rightarrow x=-6 / 5 y)$

$$
=\operatorname{Span}\left\{\left[\begin{array}{c}
-6 / 5 \\
1
\end{array}\right]\right\}
$$

$$
=\text { Span }\left\{\left[\begin{array}{c}
-6 \\
5
\end{array}\right]\right\} \text { (OK to scale eigenspaces) }
$$

$\left\{\left[\begin{array}{c}-6 \\ 5\end{array}\right]\right\}$ is a basis for E_{-4}
WARNING: You should NEVER EVER GET Vul $=\{0\}$

