LECTURE 17: EIGENVALUES AND EIGENVECTORS

Sunday, November 3, 2019 3:47 PM

Today: Will cover an important topic called eigenvalues and eigenvectors. It's not clear at first why it's useful, but you'll see in a couple of lectures why it's so useful. By the way, the only reason Google exists is *because* of eigenvalues!

I- MOTIVATION

Example: Consider A =
$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
 and v = $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Then:

In other words, if you apply A to this specific vector v, you don't just get a random vector, but a multiple of v

Definition: If $Av = \lambda v$ for some $v \neq 0$, then:

1) λ is an eigenvalue of A

2) v is an eigenvector of A (corresponding to λ)

Example: In the above example:

$$\lambda = 7$$
 is an eigenvalue of A and
 $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to $\lambda = 7$
Example: $A = \begin{bmatrix} 7 & -3 \\ 10 & -4 \end{bmatrix} \quad v = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
 $Av = \begin{bmatrix} 7 & -3 \\ 10 & -4 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix} = 2 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \lambda v$
 $\lambda = 2$ is an eigenvalue and $v = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ is an eigenvector
BUT
 $\begin{bmatrix} 7 & -3 \\ 10 & -4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ 15 \end{bmatrix} \neq \lambda \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (for any λ)
 $Av \neq \lambda v$, so $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is not an eigenvector of A
Note: Eigenvectors are really special vectors
Geometric Interpretation:
 $Av = \lambda v = \lambda$ Both Av and v lie on the same line
Picture:
Eigenvector

Motivation: Suppose $Av = \lambda v (v \neq 0)$

 $Av = \lambda v$ $<=> \lambda v - Av = 0$ $<=> (\lambda I - A)v = 0$ (have to put I because you can't subtract a number from a matrix) $<=> v \neq 0 \text{ is in Nul}(\lambda I - A)$ $<=> (\lambda I - A) \text{ is not invertible ("Ax = 0" has a nonzero solution)}$ $<=> det(\lambda I - A) = 0$

FACT: λ is an eigenvalue of A <=> det(λ I - A) = 0

Note:

- 1) det(λ I A) is called the characteristic equation of A, helps us find λ
- 2) Mnemonic: det(λ I A) sounds like λ IAR
- 3) Totally fine to use A λ I, but this is better because you'll make fewer sign mistakes.

Here:

$$A = \begin{bmatrix} 0 & 6 \\ -1 & 5 \end{bmatrix}$$

$$det(\lambda I - A) = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 6 \\ -1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda & -6 \\ 1 & \lambda -5 \end{bmatrix}$$

of A)		
	= λ (λ-5) + 6	
	$= \lambda^2 - 5\lambda + 6$	(Characteristic equation)
	=(λ-2)(λ-3)	· · ·
	= 0	
=> λ = 2 ar	id λ = 3	
Example:	Find the eigenvalues	s of $A = \begin{bmatrix} 1 & 6 \end{bmatrix}$
•	-	5 2
	• • •	
det(λI-A)	= λ-1 -6	(again, put λ on diagonal, and minus everything)
	-5 λ-2	and minus everything)
	= (λ-1)(λ-2) - 30	
	$= \lambda^2 - 3\lambda + 2 - 30$	
	= λ² - 3λ - 28	
	= (λ-7)(λ+4)	
	= 0	
=> λ = 7 ar	$\lambda = -4$	
III- FIN	DING EIGENVECTO	RS
Example:	"Find the eigenvect	ors" of $A = \begin{bmatrix} 1 & 6 \end{bmatrix}$
	"Find the eigenvecto	5 2
		L - J

STRATEGY: For each
$$\lambda$$
 you found, find Nul($\lambda I - A$)
Found: $\lambda = 7$ and $\lambda = -4$
 $\lambda = T$
Nul($7I - A$) = Nul $\begin{bmatrix} 7 - 1 & -6 \\ -5 & 7 - 2 \end{bmatrix}$ (plug in the above, but
 $= Nul \begin{bmatrix} 6 -6 \\ -5 & 5 \end{bmatrix}$
 $= Nul \begin{bmatrix} 1 - 1 \\ -1 & 1 \end{bmatrix}$
 $= Nul \begin{bmatrix} 1 - 1 \\ 0 & 0 \end{bmatrix}$ (MUST use RREF)
 $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \lambda - \gamma = 0 \Rightarrow x = \gamma$
 $\gamma = \begin{pmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ x \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
So Nul($7I - A$) = Span $\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$
 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
So Nul($7I - A$) = Span $\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$
 $Eigenspace of $\lambda = 7$$

Note: Why do we get so many eigenvectors? Because if v is an eigenvector, so is any multiple of v ! (anything on the same line as v is still an eigenvector)

$$\lambda = -4 \qquad \text{Nul}(-4\mathbf{I} - A) = \text{Nul} \begin{bmatrix} -4 - 1 & -6 \\ -5 & -4 - 2 \end{bmatrix}$$
$$= \text{Nul} \begin{bmatrix} -5 & -6 \\ -5 & -6 \end{bmatrix}$$
$$= \text{Nul} \begin{bmatrix} -5 & -6 \\ 0 & 0 \end{bmatrix}$$
$$= \text{Nul} \begin{bmatrix} 1 & 6/5 \\ 0 & 0 \end{bmatrix} \text{ (RREF)}$$
$$(= \times + 6/5 \text{ y} = 0 \Rightarrow \times = -6/5 \text{ y})$$
$$= \text{Span} \left\{ \begin{bmatrix} -6/5 \\ 1 \end{bmatrix} \right\}$$
$$= \text{Span} \left\{ \begin{bmatrix} -6/5 \\ 5 \end{bmatrix} \right\} \text{ (OK to scale eigenspaces)}$$
$$\left\{ \begin{bmatrix} -6 \\ 5 \end{bmatrix} \right\} \text{ is a basis for E.4}$$
$$WARNING: \text{You should NEVER EVER GET Nul = {0}}$$

(because an eigenvector is precisely a vector that makes this nonzero)