LECTURE 18: DIAGONALIZATION

I- THE 3×3 CASE (section 5.2)

Let's continue our eigenvalue extravaganza! The good news is that for bigger matrices, the process of finding eigenvalues/eigenvectors is exactly the same; just the algebra is messier!

Example: Find the eigenvalues of

$$
\begin{aligned}
& \left.\begin{array}{l}
A=\left[\begin{array}{ccc}
-1 & -2 & 2 \\
4 & 3 & -4 \\
0 & -2 & 1
\end{array}\right] \\
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda+1 & 2 & -2 \\
-4 & \lambda-3 & 4 \\
0 & 2 & \lambda-1
\end{array}\right| \\
\quad=0(\ldots)-2 \mid \lambda+1 \\
-2
\end{array}|+(\lambda-1)| \begin{array}{cc}
\lambda+1 & 2 \\
-4 & \lambda-3
\end{array} \right\rvert\, \\
& \quad=-2[4(\lambda+1)-8]+(\lambda-1)[(\lambda+1)(\lambda-3)+8] \\
& \quad=-2[4 \lambda+4-8]+(\lambda-1)\left[\lambda^{2}-2 \lambda-3+8\right] \\
& \quad=-2(4 \lambda-4)+(\lambda-1)\left(\lambda^{2}-2 \lambda+5\right) \\
& \quad=-2(4)(\lambda-1)+(\lambda-1)\left(\lambda^{2}-2 \lambda+5\right) \\
& \quad=(\lambda-1)\left(-8+\lambda^{2}-2 \lambda+5\right) \\
& \\
& =(\lambda-1)\left(\lambda^{2}-2 \lambda-3\right) \\
& \\
& =(\lambda-1)(\lambda-3)(\lambda+1) \\
& =0
\end{aligned}
$$

$$
\Rightarrow \lambda=1, \lambda=3, \lambda=-1
$$

(In all those problems, there's always a common factor like $(\lambda-1)$ here that's standing out)

Note: You can then find the eigenvectors just as before
Example: $\underline{\lambda=1}$

$$
\begin{aligned}
\operatorname{Nul}(1 I-A) & =\operatorname{Nul}\left[\begin{array}{ccc}
1+1 & 2 & -2 \\
-4 & 1-3 & 4 \\
0 & 2 & 1-1
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{ccc}
2 & 2 & -2 \\
-4 & -2 & 4 \\
0 & 2 & 0
\end{array}\right] \\
& =\ldots \\
& =\operatorname{Nul}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right](\text { RREF }) \\
& =\ldots \\
& =\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

II- DIAGONALIZATION (section 5.3)

Today's lecture is all about diagonal matrices
Ex: $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7\end{array}\right]$
Today's Goal: Turn a matrix A into a diagonal matrix D
Ex: $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ can be turned into $D=\left[\begin{array}{cc}7 & 0 \\ 0 & -4\end{array}\right]$
(Hard)
(Easier)
What does "can be turned into" mean?

Definition: A is diagonalizable if there is a diagonal matrix D and an invertible matrix P such that

$$
A=P D\left(P^{-1}\right)
$$

Note: If you illegally cancel out P and P^{-1} in $A=\neq P D P^{1}$ you get $A=D$, so A is like D (also see analogy below)

Example:
$A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right] \quad$ (from last time)

Find D diagonal and P invertible such that $A=P D P^{-1}$
Last time: Found
$\lambda=7$ (eigenvalue) with eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$\lambda=-4$ with eigenvector $\left[\begin{array}{c}-6 \\ 5\end{array}\right]$

Answer:
$D=\left[\begin{array}{cc}7 & 0 \\ 0 & -4\end{array}\right] \quad$ (matrix of eigenvalues)
$P=\left[\begin{array}{rr}1 & -6 \\ 1 & 5\end{array}\right] \quad$ (matrix of corresponding eigenvectors)

$$
(\lambda=7) \quad(\lambda=-4)
$$

WHY DOES THIS WORK?

Notice:

$$
\begin{aligned}
A P & =A \\
& =\left[A\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad A\left[\begin{array}{c}
-6 \\
1
\end{array}\right]\right) \\
& =\left[7\left[\begin{array}{l}
1 \\
1
\end{array}\right]-4\left[\begin{array}{c}
-6 \\
5
\end{array}\right]\right]
\end{aligned}
$$

(def. of eigenvector)

$$
\begin{aligned}
& \left\lfloor\left[\begin{array}{l}
1 \\
1
\end{array}\right]\lfloor\overline{5}\rfloor\right] \text { (def. of eigenvector) } \\
= & {\left[\begin{array}{ll}
7 & 24 \\
7 & -20
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
\text { But also PD } & =\left[\begin{array}{cc}
1 & -6 \\
1 & 5
\end{array}\right]\left[\begin{array}{ll}
7 & 0 \\
0 & -4
\end{array}\right]=\left[\begin{array}{ll}
7 & 24 \\
7 & -20
\end{array}\right] \\
& =\left[\begin{array}{l}
7 \\
1
\end{array}\right] \quad-4\left[\begin{array}{c}
-6 \\
5
\end{array}\right]
\end{aligned}
$$

So $A P=P D \Rightarrow A P^{\prime}\left(P^{-1}\right)=P D\left(P^{-1}\right) \Rightarrow A=P D P^{-1}!!!$
Upshot: This process (called diagonalization) just boils down to finding eigenvalues and eigenvectors of A

Example: (Good exam problem)
Find D diagonal and P invertible such that $A=P D P^{-1}$
Where $A=\left[\begin{array}{cc}7 & -3 \\ 10 & -4\end{array}\right]$
Eigenvalues:

$$
\begin{aligned}
|\lambda I-A| & =\left|\begin{array}{cc}
\lambda-7 & 3 \\
-10 & \lambda+4
\end{array}\right| \\
& =(\lambda-7)(\lambda+4)+30 \\
& =\lambda^{2}-3 \lambda-28+30
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda^{2}-3 \lambda+2 \\
& =(\lambda-1)(\lambda-2) \\
& =0
\end{aligned}
$$

$\Rightarrow \lambda=1$ and $\lambda=2$

$$
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

Eigenvectors:

$$
\begin{aligned}
\lambda=1 \quad \operatorname{Nul}(1 I-A) & =\operatorname{Nul}\left[\begin{array}{cc}
1-7 & 3 \\
-10 & 1+4
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{cc}
-6 & 3 \\
-10 & 5
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{cc}
2 & -1 \\
2 & -1
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right](\text { PREF }) \\
& =\ldots \\
& =\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=2 \quad \operatorname{Nul}(2 I-A)=\operatorname{Nul}\left[\begin{array}{cc}
2-7 & 3 \\
-10 & 2+2
\end{array}\right] \\
&=\operatorname{Nul}\left[\begin{array}{ll}
-5 & 3 \\
-10 & 4
\end{array}\right] \\
&=\operatorname{NuI}\left[\begin{array}{ll}
-5 & 3 \\
-5 & 3
\end{array}\right] \\
&=\operatorname{Nul}\left[\begin{array}{ll}
1 & -3 / 5 \\
0 & 0
\end{array}\right] \\
&=\ldots \\
&=\operatorname{Span}\left\{\left[\begin{array}{l}
3 \\
-5
\end{array}\right]\right\} \\
& \begin{array}{rl}
P & =\left[\begin{array}{cc}
1 & 3 \\
2 & -5
\end{array}\right] \\
\lambda=1 & 1
\end{array} \\
& \lambda=2
\end{aligned}
$$

Example: (Even better exam problem)
Same but

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

Eigenvalues:

$$
|\lambda I-A|=\ldots=(\lambda+1)(\lambda-3)^{2}
$$

$\lambda=-1,3$

Eigenvectors:

$$
\left.\begin{array}{l}
\lambda=-1 \cdots c \\
\lambda=3
\end{array} \cdots\left[\begin{array}{l}
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

(Have to repeat $\lambda=3$ twice because 2 eigenvectors for $\lambda=3$; and also had $(\lambda-3)^{2}$ in the characteristic equation)
$P=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1\end{array}\right]$

Note: The order of the eigenvalues/vectors doesn't matter, as long as the eigenvector goes with the correct eigenvalue.

III- ANALOGY

You may wonder: Why does $A=P D P^{-1}$ imply that A is like D ?
And also, does $P D P^{-1}$ appear in nature?

Notice:

$$
\begin{aligned}
A=P D P^{-1} & \Rightarrow P^{-1} A P=P^{-1} P D P^{-1} P \\
& \Rightarrow P^{-1} A P=D \\
& \Rightarrow D=P^{-1} A P
\end{aligned}
$$

What does this mean?

Suppose you want to fly from City 1 to City 2

then you have two choices:

Choice 1: Take flight P, then take flight A, then take flight P^{-1}. This whole thing is called $P^{-1} A P$ (read this from right to left, like Arabic/Farsi)

Choice 2: Take a direct flight D that brings you from 1 to 2
$P^{-1} A P=D$ says that the two choices are the same.

IN PARTICULAR: If you ignore the vertical P and P^{-1} lines (which sort of cancel out anyway) then A is "like" D

ANALOGY: In "Legend of Zelda - Twilight Princess," there's this really annoying process:

Suppose you want to teleport yourself from, say, Hyrule to Kokoriko, then: you first transform yourself into a wolf (P), then teleport yourself as a wolf (A), then transform yourself back $\left(P^{-1}\right)$. What $P^{-1} A P=D$ is saying is that this whole transform-teleport-transform process $\left(P^{-1} A P\right)$ is the same as just teleporting yourself as Link (D).

In particular, if you ignore the Link-Wolf transformation (= ignore P and P^{-1}), then teleporting yourself as a wolf (A) is really like teleporting yourself as Link (D)

This is why $A=P D P^{-1}$ really means A is "like" D

