LECTURE 19: DIAGONALIZABILITY

Let's continue our diagonalization adventure!

I- DIAGONALIZABILITY

Definition: A is diagonalizable if there are D and P such that

$$
A=P D P^{-1}
$$

Example: Is A diagonalizable?

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

Last time:
$\underline{\lambda=-1}-->\left[\begin{array}{l}0 \\ 1 \\ -1\end{array}\right]$
$\underline{\lambda=3} \rightarrow\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
$D=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right] \quad P=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1\end{array}\right]$

YES (we literally found D and P such that this works)

Note: MANY choices of D and P are acceptable, as long as the eigenvector goes with the correct eigenvalue!

Question: Is every matrix diagonalizable?
Sadly the answer is NO

Example: (EXCELLENT counterexample)
Same, but

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

1) Eigenvalues:

$$
|\lambda I-A|=\left|\begin{array}{cc}
\lambda-1 & -1 \\
0 & \lambda-1
\end{array}\right|=(\lambda-1)^{2}=0
$$

$\Rightarrow \lambda=1$ (repeated twice)

$$
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

2) Eigenvectors:

$$
\begin{aligned}
\underline{\lambda=1} \quad \operatorname{Nul}(I-A) & =\operatorname{Nul}\left[\begin{array}{cc}
1-1 & -1 \\
0 & 1-1
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right] \\
& =\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

$P=\left[\begin{array}{l}1 \\ 0\end{array}\right]$? Not square!

$$
P=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \text { ? Not invertible! }
$$

IN FACT: P does not exist! Here A is NOT diagonalizable!
Which raises the question:
WHEN is A diagonalizable?
IMPORTANT FACT:
$A(n \times n)$ is diagonalizable «<> A has $n(L I)$ eigenvectors

Here: A has only 1 (LI) eigenvector, so NO

Ex: $A=\left[\begin{array}{rr}7 & -3 \\ 10 & -4\end{array}\right]$ has $2 L I$ eigenvectors $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 5\end{array}\right]$
So yes
In fact, that's how we constructed P:
$P=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$ (just put the eigenvectors together)

Useful test:
IF $A(n \times n)$ has n distinct eigenvalues, then A is diagonalizable

Example: $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right]$
$|\lambda I-A|=\left|\begin{array}{cc}\lambda-2 & -3 \\ 0 & \lambda-4\end{array}\right|=(\lambda-2)(\lambda-4)=0 \Rightarrow \lambda=2, \lambda=4$
Two different eigenvalues, so YES
(Note: For an upper-triangular matrix, the eigenvalues are on the diagonal)

BUT: A diagonalizable $=/=>A$ has n distinct eigenvalues!
A can be diagonalizable even with just 1 or 2 eigenvalues!

Example:
$A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1\end{array}\right]$
Has only two eigenvalues $\lambda=3$ and $\lambda=-1$, but was still diagonalizable (see above) because it had 3 (LI) eigenvectors!

Example:

$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Is diagonalizable (it's diagonal!) but only has eigenvalue $\lambda=1$
Moral: To check for diagonalizability, really have to look at the
eigenvectors! (unless it has n distinct eigenvalues)
Example: Suppose A is 7×7, has eigenvalues 3 and 4 with $\operatorname{dim}\left(E_{3}\right)=5$ and $\operatorname{dim}\left(E_{4}\right)=2$. Is A diagonalizable?

YES, this basically says have $5+2=7$ (LI) eigenvectors

Sidenote:

IMT DELUXE DELUXE DELUXE

A is invertible $\Leftrightarrow 0$ is not an eigenvalue of A
(but in general, diagonalizability has nothing to do with invertibility)

II- ANALOGY

You may wonder: Why does $A=P D P^{-1}$ imply that A is like D ? And also, does PDP ${ }^{-1}$ appear in nature?

Notice:

$$
\begin{aligned}
A=P D P^{-1} & \Rightarrow P^{-1} A P=P^{-1} P D P^{-1} P \\
& \Rightarrow P^{-1} A P=D \\
& \Rightarrow D=P^{-1} A P
\end{aligned}
$$

What does this mean?

Suppose you want to fly from City 1 to City 2

Flight 1

Then you have 2 choices of flights:
Flight 1: Take a flight P, then a flight A, then a flight P^{-1} This whole journey is called $P^{-1} A P$ (read from right to left)

Flight 2: Take a direct flight D
$P^{-1} A P=D$ says that the two flights bring you to the same destination

Moreover, if you ignore the vertical lines P and P^{-1}, then you get $A=D$

ANALOGY: In "Legend of Zelda - Twilight Princess," there's this really annoying process:

Suppose you want to teleport yourself from, say, Hyrule to Kokoriko, then: You first transform yourself into a wolf (P), then you teleport yourself as a wolf (A), and then you transform yourself back $\left(P^{-1}\right)$.

This whole process is $P^{-1} A P$

In particular, if you ignore the Link to Wolf transformation, then indeed teleporting yourself as a wolf (=A) is like teleporting yourself as Link (= D), so A is "like" D

In fact, you might even say... A is SIMILAR to D !

III- SIMILARITY

In fact, diagonalizability is part of a more general concept
Definition: A is similar to $B(A \sim B)$ if there is an invertible matrix P such that

$$
A=P B P^{-1}
$$

(= A is "like" B)
Example: If A is diagonalizable, then $A=P D P^{-1}$, so A is similar to a diagonal matrix D (= A is like a diagonal matrix)

Similar matrices indeed share similar properties

Example: Show that $A \sim B \Rightarrow \operatorname{det}(A)=\operatorname{det}(B)$
$A=P B P^{-1}$ for some P

$$
\begin{aligned}
\operatorname{det}(A)=\operatorname{det}\left(P B P^{-1}\right) & =\operatorname{det}(P) \operatorname{det}(B) \operatorname{det}\left(P^{-1}\right) \\
& =\operatorname{det}(P) \operatorname{det}(B)(1 / \operatorname{det}(P)) \\
& =\operatorname{det}(B)
\end{aligned}
$$

Example: Show that $A \sim B \Rightarrow A^{2} \sim B^{2}$

Suppose $A=P B P^{-1}$

Then $A^{2}=A A=\left(P B P^{-1}\right)\left(P B P^{-1}\right)=P B B P^{-1}=P\left(B^{2}\right) P^{-1}$

Hence $A^{2} \sim B^{2}$

Example: Show that $A \sim B \Rightarrow B \sim A$
$A=P B P^{-1}$

Solve for B:
$P^{-1} A=P^{-1} P B P^{-1}=B P^{-1}$
$\left(P^{-1} A\right) P=B P^{-1} P=B$
$B=P^{-1} A P=\left(P^{-1}\right) A\left(P^{-1}\right)^{-1}=Q A Q^{-1}$ for $Q=P^{-1}$
(Point: Doesn't have to be the same P!)

Example: Show that if A is similar to B and B is diagonalizable, then A is diagonalizable

Know: $A=P B P^{-1}$ and $B=Q D Q^{-1}$

Then $A=P B P^{-1}=P\left(Q D Q^{-1}\right) P^{-1}=(P Q) D(P Q)^{-1}=R D R^{-1}$ for $R=P Q$

So $A=(B l a h) D(B l a h)^{-1}$ with D diagonal

Hence A is diagonalizable.

