LECTURE 19: DIAGONALIZABILITY

Tuesday, November 5, 2019 5:06 PM

Let's continue our diagonalization adventure!

I- DIAGONALIZABILITY

Definition: A is diagonalizable if there are D and P such that

 $A = PDP^{-1}$

Example: Is A diagonalizable?

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

Last time:

$$\frac{\lambda = -1}{1} \xrightarrow{\text{omp}} \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$

$$\frac{\lambda = 3}{0} \xrightarrow{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

YES (we literally found D and P such that this works)

Note: MANY choices of D and P are acceptable, as long as the eigenvector goes with the correct eigenvalue!

Question: Is every matrix diagonalizable?

Sadly the answer is NO

Example: (EXCELLENT counterexample)

Same, but

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

1) Eigenvalues:

$$|\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$

=> λ = 1 (repeated twice)

$$\mathsf{D} = \begin{bmatrix} 1 & \mathsf{O} \\ \mathsf{O} & 1 \end{bmatrix}$$

2) Eigenvectors:

$$\frac{\lambda = 1}{\Delta = 1} \quad \text{Nul}(\mathbf{I} - \mathbf{A}) = \text{Nul} \begin{bmatrix} 1 - 1 & -1 \\ 0 & 1 - 1 \end{bmatrix}$$
$$= \text{Nul} \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$
$$= \text{Span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

P = [1] ? Not square!

	P = [11] ? Not invertible!				
	IN FACT: P does not exist! Here A is NOT diagonalizable!				
	Which raises the question:				
_	WHEN is A diagonalizable?				
	IMPORTANT FACT:				
	A (n × n) is diagonalizable <=> A has n (LI) eigenvectors				
L	Here: A has only 1 (LI) eigenvector, so NO				
	Ex: $A = \begin{bmatrix} 7 & -3 \\ 10 & -4 \end{bmatrix}$ has 2 LI eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$				
	So yes				
	In fact, that's how we constructed P:				
	$P = \begin{bmatrix} 1 & 2 \end{bmatrix}$ (just put the eigenvectors together)				
	$\begin{bmatrix} -2 \\ 3 \\ -5 \end{bmatrix}$ (are particularly below of a significance of a				
Г					
	Useful test:				
	IF A (nxn) has n distinct eigenvalues, then A is diagonalizable				

Example:
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$$

$$|\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda - 2 & -3 \\ 0 & \lambda - 4 \end{vmatrix} = (\lambda - 2)(\lambda - 4) = 0 \Rightarrow \lambda = 2, \lambda = 4$$

Two different eigenvalues, so YES

(**Note**: For an upper-triangular matrix, the eigenvalues are on the diagonal)

BUT: A diagonalizable =/=> A has n distinct eigenvalues!

A can be diagonalizable even with just 1 or 2 eigenvalues!

Example:

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

Has only two eigenvalues $\lambda = 3$ and $\lambda = -1$, but was still diagonalizable (see above) because it had 3 (LI) eigenvectors!

Example:

_	-		_
A =	1	0	0
	0	1	0
	0	0	1_

Is diagonalizable (it's diagonal!) but only has eigenvalue λ = 1

Moral: To check for diagonalizability, really have to look at the

eigenvectors! (unless it has n distinct eigenvalues)
Example : Suppose A is 7×7 , has eigenvalues 3 and 4 with dim(E ₃) = 5 and dim(E ₄) = 2. Is A diagonalizable?
YES, this basically says have 5 + 2 = 7 (LI) eigenvectors
Sidenote:
IMT DELUXE DELUXE
A is invertible <=> 0 is not an eigenvalue of A

(but in general, diagonalizability has nothing to do with invertibility)

II- ANALOGY

You may wonder: Why does A = PDP⁻¹ imply that A is like D? And also, does PDP⁻¹ appear in nature?

Notice:

 $A = PDP^{-1} \Rightarrow P^{-1}AP = P^{-1}PDP^{-1}P$ => P^{-1}AP = D => D = P^{-1}AP

What does this mean?

Suppose you want to fly from City 1 to City 2

ANALOGY: In "Legend of Zelda - Twilight Princess," there's this really annoying process:

Suppose you want to teleport yourself from, say, Hyrule to Kokoriko, then: You first transform yourself into a wolf (P), then you teleport yourself as a wolf (A), and then you transform yourself back (P⁻¹).

This whole process is P⁻¹ A P

In particular, if you ignore the Link to Wolf transformation, then indeed teleporting yourself as a wolf (= A) is like teleporting yourself as Link (= D), so A is "like" D

In fact, you might even say... A is SIMILAR to D!

III- SIMILARITY

In fact, diagonalizability is part of a more general concept

Definition: A is similar to B (A ~ B) if there is an invertible matrix P such that $A = PBP^{-1}$

(= A is "like" B)

Example: If A is diagonalizable, then A = PDP⁻¹, so A is similar to a diagonal matrix D (= A is like a diagonal matrix)

Similar matrices indeed share similar properties

Example: Show that A ~ B => det(A) = det(B)

A = PBP⁻¹ for some P

Example: Show that $A \sim B \Rightarrow A^2 \sim B^2$

Suppose A = PBP-1
Then $A^2 = AA = (PBP^{-1})(PBP^{-1}) = PBBP^{-1} = P(B^2)P^{-1}$
Hence A ² ~ B ²
Example: Show that A ~ B => B ~ A
•
$A = PBP^{-1}$
Solve for B:
$P^{-1} A = P^{-1} PBP^{-1} = BP^{-1}$
$(P^{-1} A) P = B P^{-1} P = B$
$B = P^{-1} A P = (P^{-1}) A (P^{-1})^{-1} = Q A Q^{-1} \text{ for } Q = P^{-1}$

(Point: Doesn't have to be the same P !)

Example: Show that if A is similar to B and B is diagonalizable, then A is diagonalizable

Know: $A = PBP^{-1}$ and $B = QDQ^{-1}$

Then A = PBP⁻¹ = P(QDQ⁻¹)P⁻¹ = (PQ)D(PQ)⁻¹ = RDR⁻¹ for R = PQ

So A = (Blah) D (Blah)⁻¹ with D diagonal

Hence A is diagonalizable.