LECTURE 20: B-MATRICES

Friday, November 8, 2019 3:21 PM

Today: Let's start with a topic that has nothing to do with eigenvectors!

I- RECAP: MATRIX OF A LINEAR TRANSFORMATION

where $\mathscr{B}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\} \quad\left(\right.$ Basis of $\left.R^{2}\right) \quad A$
$\iota^{\mathscr{B}} \downarrow$
$A\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]=\stackrel{1}{=}\left[\begin{array}{l}1 \\ 0\end{array}\right]+3\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{l}1 \\ 3\end{array}\right]$
$A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]=\underline{2}\left[\begin{array}{l}1 \\ 0\end{array}\right]+\underline{4}\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{l}2 \\ 4\end{array}\right]$
Answer: $B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad$ " B-matrix of A "
General Strategy: To find the \mathscr{B}-matrix of A

1. For every b in \mathscr{B}, calculate $A b$
2. Write the result in terms of \mathscr{B}

II- $\operatorname{B-MATRIX}$
Example: Find the \mathscr{B}-matrix of $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$ where

$$
\left.\begin{array}{l}
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} \text { (given) } \\
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\stackrel{2}{=}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\underline{0}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \rightarrow\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
A\left[\begin{array}{l}
1 \\
-1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\stackrel{1}{=}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\underline{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \begin{aligned}
& B=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Interpretation:
B "=" A, but in the new coordinates $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$
Picture:

Example: Find the \mathfrak{B}-matrix of $A=\left[\begin{array}{cc}-1 & 4 \\ -2 & 3\end{array}\right]$

$$
\begin{aligned}
& \mathcal{B}=\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} \\
& A\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{ll}
-1 & 4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right]=a\left[\begin{array}{l}
3 \\
2
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right]
\end{aligned}
$$

Solve: $\quad\left[\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}5 \\ 0\end{array}\right]$

$$
\left[\begin{array}{rr|r}
3 & -1 & 5 \\
2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right] \Rightarrow a=1, b=-2
$$

Says:

$$
\begin{aligned}
& A\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\underline{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]+\stackrel{(-2)}{=}\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \quad \rightarrow-->\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& A\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
5
\end{array}\right]=a\left[\begin{array}{l}
3 \\
2
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& \left(\begin{array}{cc|c}
3 & -1 & 5 \\
2 & 1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \quad-\cdots\left[\begin{array}{c}
2 \\
1
\end{array}\right]
\end{aligned}
$$

SAME MATRIX! (call it P)

Answer: $\quad B=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$
Faster Way: Since you're doing the same row-reduction anyway,

$$
\begin{aligned}
& {[P \mid A P]=\left[\begin{array}{rr}
3 & -1 \\
2 & 1
\end{array}\right)\left[\begin{array}{l}
5 \\
0
\end{array}\right]\left[\begin{array}{l}
5 \\
5
\end{array}\right] \rightarrow\left[\begin{array}{ll|ll}
1 & 0 & 1 & 2 \\
0 & 1 & -2 & 1
\end{array}\right]=[I \mid B]} \\
& B=\left[\begin{array}{ll}
1 & 2 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

Example: $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$
$\mathscr{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 4\end{array}\right]\right\}$
$P=\left[\begin{array}{ll}1 & 5 \\ 1 & 4\end{array}\right]$
$A P=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]\left[\begin{array}{ll}1 & 5 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}2 & 9 \\ 2 & 7\end{array}\right]$
$[P \mid A P]=\left[\begin{array}{ll|ll}1 & 5 & 2 & 9 \\ 1 & 4 & 2 & 7\end{array}\right] \cdots\left[\begin{array}{ll|lr}1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 2\end{array}\right]=[I \mid B]$
$B=\left[\begin{array}{rr}2 & -1 \\ 0 & 2\end{array}\right]$

Notice: To construct B, you first calculate AP and then do P^{-1} of that, so in fact:
$B=P^{-1} A P \Rightarrow A=P B P^{-1}$
=> Fact: A is always similar to its B-matrix!
Which leads me to the next topic...

III- B-MATRIX AND EIGENVECTORS

What does that have to do with eigenvectors?
Example: $A=\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$
$\mathfrak{B}=\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]\right\}$
$A\left[\begin{array}{l}1 \\ -1\end{array}\right]=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}5 \\ -5\end{array}\right]=\underline{5}\left[\begin{array}{c}1 \\ -1\end{array}\right]+\underline{0}=\left[\begin{array}{c}1 \\ -2\end{array}\right]--->\left[\begin{array}{l}5 \\ 0\end{array}\right]$
$A\left[\begin{array}{c}1 \\ -2\end{array}\right]=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -2\end{array}\right]=\left[\begin{array}{c}3 \\ -6\end{array}\right]=\stackrel{0}{=}\left[\begin{array}{c}1 \\ -1\end{array}\right]+\frac{3}{=}\left[\begin{array}{c}1 \\ -2\end{array}\right] \cdots\left[\begin{array}{l}0 \\ 3\end{array}\right]$
$B=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$ DIAGONAL!!!
Coincidence??? I think not!

Notice: $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ are eigenvectors of $A!!!$
$\Rightarrow F A C T$: If \mathfrak{B} is a basis of eigenvectors of A, then B is diagonal!
Interpretation:

If your new axes are $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ then $A "="\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$
That is, A stretches vectors on the $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ axis by 5
And stretches vectors on the $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ axis by 3
And for any other vector, A does a mix of the two
(This gives us a complete characterization of what A does geometrically! WOW!)

Example: Find a basis \mathfrak{B} for which B is diagonal, where

$$
A=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]
$$

Eigenvalues:

$$
\begin{aligned}
& |\lambda I-A|=\left|\begin{array}{cc}
\lambda-5 & -4 \\
-4 & \lambda-5
\end{array}\right|=(\lambda-5)^{2}-4^{2}=(\lambda-5-4)(\lambda-5+4)=(I-9)(I-1)=0 \\
& \Rightarrow \lambda=1,9
\end{aligned}
$$

Eigenvectors:

$$
\begin{aligned}
& \lambda=1-\operatorname{Nul}\left[\begin{array}{cc}
-4 & -4 \\
-4 & -4
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} \\
& \underline{\lambda=9} \cdots \operatorname{Nul}\left[\begin{array}{cc}
4 & -4 \\
-4 & 4
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \\
& \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \\
& B=\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right]
\end{aligned}
$$

III- APPLICATION 1: \sqrt{A}
This ends all the dry theory from Chapter 5, and for the next couple of lectures, we'll just do fun applications, so you can really see WHY diagonalization is so useful!

Note: All the applications are just based on the following observation:
If $A=P D P^{-1}$, then
$A^{2}=A A=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}$, and generally
$A^{n}=P D^{n} P^{-1}$
Moreover, if, say, $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ then $D^{n}=\left[\begin{array}{ll}2^{n} & 0 \\ 0 & 3^{n}\end{array}\right]$
Point: D is easy to calculate, and hence A is easy to calculate!
Example: Find $\sqrt{\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]}$

$$
A=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]
$$

Find D and P :

$$
\begin{aligned}
& \lambda=1 \cdots\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \lambda=9 \cdots\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& D=\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right] \quad P=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

$$
A=P D P^{-1}
$$

$$
\sqrt{A}=P \sqrt{D} \quad P^{-1}
$$

$$
=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{1} & 0 \\
0 & \sqrt{9}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]^{-1}
$$

$$
=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

And in fact:

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]=A!!!(W O W)
$$

Note: In the same way, can define $e^{A}, \sin (A)$, and even A^{B} (see YouTube)

More applications next time!

