LECTURE 21: APPLICATIONS OF DIAGONALIZATION

Today: 3 AMAZING applications of diagonalization, so that you can finally understand why this chapter is so useful!

I- PRELUDE

Note: All the applications are just based on the following observation:
If $A=P D P^{-1}$, then
$A^{2}=A A=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}$, and generally
$A^{n}=P D^{n} P^{-1}$
Moreover, if, say, $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ then $D^{n}=\left[\begin{array}{cc}2^{n} & 0 \\ 0 & 3^{n}\end{array}\right]$
Point: D is easy to calculate, and hence A is easy to calculate!
Note: Using this idea, can also calculate $\sqrt{A}, e^{A}, \cos (A)$ (see YouTube)

II- APP 1: POKÉMON BATTLE

Welcome to Pokémon stadium, where we're about to witness a fierce battle between Charmander and Pikachu!

(The way Pokémon works is that there are several rounds, and at each round both Pokémon attack each other, and they win/lose HP. The game is over if one of them has 0 HP)
$C_{n}=H P$ of Charmander after round n
$P_{n}=H P$ of Pikachu after round n

Initially: $C_{0}=100$

$$
P_{0}=46
$$

And: $\left\{\begin{array}{l}C_{n+1}=16 C_{n}-35 P_{n} \\ P_{n+1}=6 \quad C_{n}-13 P_{n}\end{array}\right.$
(After each round, Charmander heals himself to gain 16Cn but also gets attacked by Pickachu and loses 35Pn
Pikachu steals HP from Charmander and gains $6 C_{n}$ but electrocutes himself and loses $13 P_{n}$)

Goal: 1) Find a formula for P_{n} and C_{n}
2) Who loses first?

STEP 1: Matrix Form

$$
\begin{aligned}
& {\left[\begin{array}{l}
C_{n+1} \\
P_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
16 & -35 \\
6 & -13
\end{array}\right]} \\
& \text { Next } \quad \text { A } \quad\left[\begin{array}{l}
C_{n} \\
P_{n}
\end{array}\right] \\
& \text { Now }
\end{aligned}
$$

STEP 2: Diagonalize A

$$
A=P D P^{-1} \quad D=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \quad P=\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right]
$$

STEP 3:

$$
\begin{align*}
A^{n} & =P D^{n} P^{-1} \\
& =\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right]\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right]^{-1} \\
& =\ldots \tag{*}\\
& =\left[\begin{array}{ll}
-14+15\left(2^{n}\right) & 35-35\left(2^{n}\right) \\
-6+6\left(2^{n}\right) & 15-14\left(2^{n}\right)
\end{array}\right]
\end{align*}
$$

STEP 4:

$$
\left[\begin{array}{l}
C_{1} \\
P_{1}
\end{array}\right]=A\left[\begin{array}{l}
C_{0} \\
P_{0}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
C_{2} \\
P_{2}
\end{array}\right]=A\left[\begin{array}{l}
C_{1} \\
P_{1}
\end{array}\right]=A \quad A\left[\begin{array}{l}
C_{0} \\
P_{0}
\end{array}\right]=A^{2}\left[\begin{array}{l}
C_{0} \\
P_{0}
\end{array}\right]
$$

$\left[\begin{array}{l}C_{n} \\ P_{n}\end{array}\right]=A^{n}\left[\begin{array}{l}C_{0} \\ P_{0}\end{array}\right]=(*) \quad\left[\begin{array}{c}100 \\ 46\end{array}\right]=\left[\begin{array}{c}210-110\left(2^{n}\right) \\ 90-44\left(2^{n}\right)\end{array}\right]$
Ex: $\left[\begin{array}{l}C_{1} \\ P_{1}\end{array}\right]=\left[\begin{array}{c}210-110(2) \\ 90-44(2)\end{array}\right]=\left[\begin{array}{c}-10 \\ 2\end{array}\right] \Rightarrow$ Charmander Loses!

III- APP 2: PRESS F FOR FIBONACCI

(Consider the following "fun" game: Start with 0 and 1, and the next number is the sum of the previous 2)
$0,1,1,2,3,5,8,13, \ldots$
(Fibonacci used it to count... bunnies)
$\left\{\begin{array}{l}F_{n+1}=F_{n}+F_{n-1} \quad(\Rightarrow \text { Future }=\text { Present }+ \text { Past }) \\ F_{0}=0 \\ F_{1}=1\end{array}\right.$
Goal: Find a formula for F_{n}
Trick: Add the following "trivial" equation

$$
\left\{\begin{array}{l}
F_{n+1}=F_{n}+F_{n-1} \\
F_{n}=F_{n}
\end{array}\right.
$$

(Why? That way we can turn it into matrix form)
STEP 1: Matrix Form

$$
\underset{\text { Next }}{\left[\begin{array}{l}
F_{n+1} \\
F_{n}
\end{array}\right]}=\underset{A}{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]} \underset{\text { Now }}{\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right]}
$$

STEP 2: Diagonalize A

$$
\begin{aligned}
& A=P D P^{-1} \quad D=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \quad P=\left[\begin{array}{ll}
a & b \\
1 & 1
\end{array}\right] \\
& a=\frac{1+\sqrt{5}}{2}=\phi(\text { Golden Ratio }), b=\frac{1-\sqrt{5}}{2}=1-a
\end{aligned}
$$

STEP 3:

$$
\begin{align*}
A^{n}=P D^{n} P^{-1} & =\left[\begin{array}{ll}
a & b \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
a^{n} & 0 \\
0 & b^{n}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
1 & 1
\end{array}\right]^{-1} \\
& =\ldots \tag{*}\\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
a^{n+1}-b^{n+1} & a\left(b^{n+1}\right)-b\left(a^{n+1}\right) \\
a^{n}-b^{n} & a\left(b^{n}\right)-b\left(a^{n}\right)
\end{array}\right]
\end{align*}
$$

STEP 4:
$\left[\begin{array}{l}F_{n+1} \\ F_{n}\end{array}\right]=A^{n}\left[\begin{array}{l}F_{1} \\ F_{0}\end{array}\right]=A^{n}\left[\begin{array}{l}1 \\ 0\end{array}\right]=(*)\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{ll}1 / \sqrt{5} & \left(a^{n+1}-b^{n+1}\right) \\ 1 / \sqrt{5} & \left(a^{n}-b^{n}\right)\end{array}\right]$

Answer:
$F_{n}=1 / \sqrt{5}\left(a^{n}-b^{n}\right)=1 / \sqrt{5}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{N}-\left(\frac{1-\sqrt{5}}{2}\right)^{N}\right)$
WOW, who would have thought???
At each step, the square roots magically cancel out to give you the sequence $0,1,1,2,3,5,8, \ldots$

IV- APP 3: TAKE IT TO THE LIMIT!

(Setting: Start with 2 Boxes with equal number of balls At each step, take 80% of the balls from 1 and put it in 2, and at the same time, take 60% of the balls from 2 and put it in 1)
$X_{n}=\#$ of balls in Box 1 after n steps
$y_{n}=\#$ of balls in Box 2 after n steps
Initially:
$X_{0}=0.5$
$y_{0}=0.5$
(Means: 50% of balls are in 1 and 50% in 2)
$\left\{\begin{array}{l}x_{n+1}=0.2 x_{n}+0.6 y_{n} \\ y_{n+1}=0.8 x_{n}+0.4 y_{n}\end{array}\right.$
(Why? The only way to be in 1 at the next round is either if you were in 1 to begin with (20% chance) or if you were transferred from 2 (60 \% chance))

Question: What happens in the long-run? What are X_{∞} and Y_{∞} ?
STEP 1: Matrix Form

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\frac{\left[\begin{array}{ll}
0.2 & 0.6 \\
0.8 & 0.4
\end{array}\right]}{A}\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
$$

STEP 2:
$A=P D P^{-1}, \quad D=\left[\begin{array}{cc}-0.4 & 0 \\ 0 & 1\end{array}\right] \quad P=\left[\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right]$
STEP 3:
$A^{n}=P D^{n} P^{-1}$
$A^{\infty}=P D^{\infty} P^{-1}$
$=\left[\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right]\left[\begin{array}{cc}(-0.4)^{\infty} & 0 \\ 0 & 1^{\infty}\end{array}\right]\left[\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right]^{-1}$
$=\left[\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \quad(1 / 7)\left[\begin{array}{cc}4 & -3 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{ll}3 / 7 & 3 / 7 \\ 4 / 7 & 4 / 7\end{array}\right]$

STEP 4:
$\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right]=A^{n}\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$
$\left[\begin{array}{l}x_{\infty} \\ y_{\infty}\end{array}\right]=A^{\infty}\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]=\left[\begin{array}{cc}3 / 7 & 3 / 7 \\ 4 / 7 & 4 / 7\end{array}\right]\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]=\left[\begin{array}{l}3 / 7 \\ 4 / 7\end{array}\right]$
(So in the end, about $3 / 7$ of the balls will be in 1 and $4 / 7$ will be in 2)

Why? Suppose $X_{0}=a$, then $Y_{0}=1-a$
(Ex: If $X_{0}=0.25$, then $Y_{0}=0.75=1-0.25$)

Then
$\left[\begin{array}{l}X_{\infty} \\ y_{\infty}\end{array}\right]=A^{\infty}\left[\begin{array}{l}X_{0} \\ y_{0}\end{array}\right]=\left[\begin{array}{ll}3 / 7 & 3 / 7 \\ 4 / 7 & 4 / 7\end{array}\right]\left[\begin{array}{c}a \\ 1-a\end{array}\right]=\left[\begin{array}{l}3 / 7 \\ 4 / 7\end{array}\right]$

Note: Will see a SICK application of this next time!

