LECTURE 23: ORTHOGONALITY-AWESOMENESS

Today: What makes orthogonality so awesome? There will be MANY miracles!

I- ORTHOGONAL SETS

Definition: \mathscr{B} is orthogonal if for any two different vectors u and v in \mathscr{B}, we have $u \cdot v=0$

Example: Is $\mathscr{B}=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 2\end{array}\right]\right\}$ orthogonal?
\square
$u \cdot v=2(-3)+3(2)=0$, so YES
(Note: No need to check v u because v•u=u v v=0
No need to check $u \cdot u$ because need different vectors)
Example:
(a) Is $\left.\mathscr{B}=\underset{u}{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]} \underset{v}{\left[\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right]} \underset{w}{\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]}\right\}$ orthogonal?
(Seems like there's a million different things to check, but really only need to check 3 things)
$u \cdot v=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right]=-1+0+1=0$
$u \cdot w=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]=2+0-2=0$
$v \cdot w=\left[\begin{array}{r}-1 \\ 4 \\ 1\end{array}\right] \cdot\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]=-2+4-2=0$
(b) Is \mathfrak{B} linearly independent?

Neat Fact: Any orthogonal set without the \mathbf{O} vector is linearly independent!

So YES

Why? Suppose $a u+b v+c w=0 \quad$ (show $a=b=c=0$)
Dot with $u: \quad(a u+b v+c w) \cdot u=0 \cdot u=0$

$$
\begin{aligned}
& a u \cdot u+b v / \rho^{0}+c u \\
& \text { (by orthogonality) } \\
& a(\underbrace{u \cdot u}_{\neq 0})=0 \\
\Rightarrow & a=0 \quad(\text { since } u \neq 0)
\end{aligned}
$$

Similarly, dot with v to get $b=0$ and dot with w to get $c=0$

Note: In particular, here \mathscr{B} is a $L I$ set in R^{3} with 3 vectors, hence it's
a Basis for R^{3} !

Moral: Orthogonality is NICE, it simplifies a lot of things that we had trouble with before
(c) Express $x=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right]$ as a linear combo of u, v, w

Find a, b, c such that $x=a u+b v+c w$
(Usually a pain to do because it required row-reduction, but here none of that stuff!)

Trick: Dot with u:
$x \cdot u=(a u+b v+c w) \cdot u=a u \cdot u+b y \lambda_{u}^{0}+c w / \hat{u}=a u \cdot u$
$a u \cdot u=x \cdot u$
$a=\frac{x \cdot u}{u \cdot u}$

Here:

$$
a=\frac{\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}=\frac{6}{2}=3
$$

Similarly: Dot with v

$$
\begin{aligned}
& b=\frac{x \cdot v}{v \cdot v} \\
& b=\frac{\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right]}{\left[\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right]}=\frac{2}{18}=\frac{1}{9} \\
& c=\frac{x \cdot w}{w \cdot w}
\end{aligned}
$$

$$
c=\frac{\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]}{\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]}=\frac{-4}{9}
$$

Says:

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\frac{1}{9}\left[\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right]+\frac{-4}{9}\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]} \\
& x=a u+b v+c w
\end{aligned}
$$

(Again, imagine doing this with row-reduction, here we get a direct formula!)

Summary: If $\mathscr{B}=\{u, v, w\}$ is orthogonal and $x=a u+b v+c w$, then

$$
a=\frac{x \cdot u}{u \cdot u} \quad b=\frac{x \cdot v}{v \cdot v} \quad c=\frac{x \cdot w}{w \cdot w}
$$

Make sure to know this formula, we'll use it over and over again!

Hugging analogy: Suppose x is walking down the street and just wants to hug everyone. First, x hugs $u(=x \cdot u)$ and then u is so happy it hugs itself $(=u \cdot u)$, then x hugs $v(=x \cdot v)$ and v hugs itself $(=v \cdot v)$, and finally x hugs $w(=x \cdot w)$ and w hugs itself $(=w \cdot w)$

II- ORTHONORMAL SETS

Let's power up and define orthonormal sets (= super orthogonal sets), which are even nicer than orthogonal sets

Example:

(a) Is $\mathscr{B}=\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{c}-4 \\ 3\end{array}\right]\right\}$ orthogonal?

$$
u \quad v
$$

$u \cdot v=3(-4)+4(3)=0$, so yes
(b) Is \mathfrak{B} orthonormal?

Definition: Orthonormal $=$ Orthogonal + Each vector has length 1

Here: $\|u\|=3^{2}+4^{2}=5=1=1$, so NO
(c) Normalize \mathfrak{B} (= make each vector length 1)

$$
\begin{aligned}
& u^{\prime}=\frac{u}{\|u\|}=\frac{\left[\begin{array}{l}
3 \\
4
\end{array}\right]}{5}=\left[\begin{array}{r}
3 / 5 \\
4 / 5
\end{array}\right] \\
& v^{\prime}=\frac{v}{\|v\|}=\frac{\left[\begin{array}{r}
-4 \\
3
\end{array}\right]}{5}=\left[\begin{array}{r}
-4 / 5 \\
3 / 5
\end{array}\right]
\end{aligned}
$$

(d) Is $\mathscr{B}^{\prime}=\left\{\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right],\left[\begin{array}{c}-4 / 5 \\ 3 / 5\end{array}\right]\right\}$ orthonormal?

YES (Orthogonal + Length 1)
(e) Is \mathscr{B}^{\prime} a basis for R^{2} ?

YES, since \mathfrak{B}^{\prime} is in particular orthogonal (\Rightarrow LI) and has 2 vectors

$$
\begin{aligned}
& \text { (f) Express } x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { as a linear combo of }\left\langle\begin{array}{c}
\left.\left[\begin{array}{c}
3 / 5 \\
4 / 5
\end{array}\right],\left[\begin{array}{c}
-4 / 5 \\
3 / 5
\end{array}\right]\right\} \\
x=a u^{\prime}+b v^{\prime} \\
a=\frac{x \cdot u^{\prime}}{u^{\prime} \cdot u^{\prime}}=1
\end{array}=x \cdot u^{\prime}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
3 / 5 \\
4 / 5
\end{array}\right]=7 / 5\right. \\
& b=\frac{x \cdot v^{\prime}}{v^{\prime} \cdot v^{\prime}}=x \cdot v^{\prime}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
-4 / 5 \\
3 / 5
\end{array}\right]=-1 / 5
\end{aligned}
$$

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left(\frac{7}{5}\right)\left[\begin{array}{l}
3 / 5 \\
4 / 5
\end{array}\right]+\left(\frac{-1}{5}\right)\left[\begin{array}{r}
-4 / 5 \\
3 / 5
\end{array}\right] \text { (WOW) }
$$

Summary: If $\mathscr{B}=\{u, v, w\}$ is orthonormal and $x=a u+b v+c w$, then
$b=x \cdot v$
$c=x \cdot w$
(Even simpler!)

III- ORTHOGONAL COMPLEMENTS

(Completely unrelated, but complements our discussion of orthogonality)

Example: Find all the vectors x in R^{3} that are orthogonal to

$$
u=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { and } v=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Picture:

Slow way:

$$
\begin{aligned}
& \text { Suppose } x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { is orthogonal to } u \text { and } v \text {, then: } \\
& \left\{\begin{array}{l}
x \cdot u=0 \\
x \cdot v=0
\end{array}\right. \\
& {\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0} \\
& {\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0} \\
& \Rightarrow\left[\begin{array}{l}
x+z=0 \Rightarrow \\
x+y=0
\end{array} \Rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Row-reduce: $\left[\begin{array}{lll|l}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0\end{array}\right]$

$$
\left\{\begin{array} { l }
{ x + z = 0 } \\
{ y - z = 0 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
x=-z \\
y=z
\end{array}\right.\right.
$$

$$
x=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-z \\
z \\
z
\end{array}\right]=z\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]
$$

Answer: Span $\left\langle\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right)$

Picture:

Application (Math 2D):
Find the equation of the plane that goes through 0 and contains the vectors $u=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
"Normal" vector is $\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]$ (see picture above)
Answer: $(-1) x+(1) y+(1) z=0=>-x+y+z=0$
(Could use cross-products, but this technique works in ANY dimension!)
Faster way:
$A=[u v]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
Found: $\underbrace{\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Ans $=\operatorname{Nul}\left(A^{\top}\right)=\operatorname{Nul}\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]=\ldots=$ Span $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$
Note: CANNOT POSSIBLY be $\operatorname{Nul}(A)$, because $\operatorname{Nul}(A)$ is in R^{2} but we need something in R^{3} !

