LECTURE 24: ORTHOGONAL PROJECTIONS

Wednesday, November 20, 2019 9:30 PM
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Definition: If W is a subspace of R", then

W= All the vectors that are L to (all the vectors) in W
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Note: In terms of matrices, W = Col(A) and we showed W+ = Nul(AT)

Hence (Col(A))= NuI(AT)

Mnemonic: Put that frown upside down, put L inside your matrix to
become T

Also (NUI(A)= Col(AT) | (= "Row(A)")

II- OP ON A LINE

Today: Orthogonal Projections, which is a neat way of "squishing" a
vector on another vector (this will have LOTS of insane applications,
see next 2 lectures)

Goal: Given a point x and a line L, want to "squish" x on L

Picture:

L = Span {u}

Many different ways of doing that, but there is one way that
is optimal



Definition: The orthogonal projection onf xonlLis
N
the point on L such that x - x L L
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Example: Calculate the OP x of x=|1]) onlL = Spans[ ) S
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(1) >/<\is inL, so x =@ u for some a

() x-%LL so(x-%)Lu
:>(x-,>\<)-u=0

=>(x-au)* u=0

=>x-u-au-u=0

=>au-*u=x-u

=>a= x*u (OMG, the hugging formulalll)
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FACT: x={(x-u\u
u-u
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Do NOT blindly memorize this! ALWAYS think: x is some



multiple of u (x = au), where the multiple is given by hugging!
(b) Calculate the (smallest) distance between x and L

(Don't memorize, look at the picture above !)

Ans: [Ix-xI1= 11[1) -(3/5]11 = lI2/5 ||:bE: 1
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(So in this sense, X is optimal -> 6.5)
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( ¢ ) Find a vector perpendicular to u = [IJ
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(Gives an easy way of building perpendicular vectors -> 6.4)

(d) Write x as a sum of 2 vectors, one in L and one
perpendicular to L

6/5 -1/5
inL 1ltolL

Trick: x = X + (X-X) = ( 3/5J+ 2/5 )

(Similar in physics to decomposing a force into tangential and
normal component)

ITI- OP ON > 2 VECTORS



The beautiful thing is that we can do the same procedure not
only for lines, but also for planes (and really any subspace)

Example: Let W = Span 1][-1 x=|-1
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(a) Find the OP Q of xon W
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Definition: x is the vector in W such that (x - x) L ué&v
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By (1), x = au + bv
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By (2),x= [ x *ulu +[x-Vv\ v
(u-u) Q/v)
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(b) Find the distance between x and W

RETTE

(c) Find avector L touand v
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(d) Write x as the sum of 2 vectors, one in W and one L to W

N A
XxX=x + (x-x)
in W in W+

IV- ORTHOGONAL MATRICES

Related fo this is the concept of orthogonal matrices

Example: LetQ= [ 1/V3 1/ (2 ) =[ulv]
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NOTICE: The columns of Q are orthonormal

(QFIdQ™Q =TI

Why? Q"Q=[u)] [ulvl=]u-u
v Veu
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(b) Find QQ"x where x = [1
OJ

WARNING: In general, QQ" 7T

QQ"x= [u]v] [_U_J[XJ
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Orthonormal

u-vi|=]1 O)=TI
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Fact: QQ'x = ;(\: OP on W = Span{u,v} = Col(Q)




Here:
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( ¢) Calculate ||Qx] |
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FACT: [|QxI| = [Ix]] = |I[1
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Why? [|Qx]]? = (Qx) - (Qx) = (Qx)T Qx = xT QT Q x = x" I x

=x"x=x+*xz=||x||?




