## LECTURE 24: ORTHOGONAL PROJECTIONS

Wednesday, November 20, 2019 9:30 PM



| <b>Note:</b> In terms of matrices, W = Col(A) and we showed $W^{\perp} = Nul(A^{\top})$ |                                                                                 |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Hence                                                                                   | (Col(A)) = Nul(A <sup>T</sup> )                                                 |
|                                                                                         |                                                                                 |
| <b>Mnemonic:</b> Put that frown upside down, put $ot$ inside your matrix to             |                                                                                 |
| become T                                                                                |                                                                                 |
|                                                                                         |                                                                                 |
| Also                                                                                    | $(\operatorname{Nul}(A)) = \operatorname{Col}(A')  (= \operatorname{Row}(A)'')$ |
|                                                                                         |                                                                                 |
| II- OP ON A                                                                             | LINE                                                                            |
|                                                                                         |                                                                                 |
| Today: Orthogonal Projections, which is a neat way of "squishing" a                     |                                                                                 |
| vector on and                                                                           | other vector (this will have LOTS of insane applications,                       |
| see next 2 le                                                                           | ctures)                                                                         |
| Coole Civen a point wand a line Lawant to "aquich" wan l                                |                                                                                 |
| Bodi. Biven a point & and a line L, want to squish & on L                               |                                                                                 |
| Picture:                                                                                | ×                                                                               |
|                                                                                         |                                                                                 |
|                                                                                         | L = Span {u}                                                                    |
|                                                                                         |                                                                                 |
|                                                                                         |                                                                                 |
|                                                                                         | X                                                                               |

Many different ways of doing that, but there is one way that is optimal

0



Do NOT blindly memorize this! ALWAYS think:  $\hat{x}$  is some

multiple of u (x = au), where the multiple is given by hugging!

(b) Calculate the (smallest) distance between x and L

(Don't memorize, look at the picture above !)

Ans: 
$$||x - \hat{x}|| = ||\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 3/5 \\ 6/5 \end{bmatrix} || = ||\begin{bmatrix} 2/5 \\ -1/5 \end{bmatrix} || = \begin{bmatrix} 5 \\ 25 \end{bmatrix} = \frac{1}{\sqrt{5}}$$

(So in this sense,  $\stackrel{\land}{x}$  is optimal -> 6.5)

(c) Find a vector perpendicular to  $u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 

 $\underline{Ans:} \times - \hat{x} = \begin{bmatrix} 2/5 \\ -1/5 \end{bmatrix}$ 

(Gives an easy way of building perpendicular vectors -> 6.4)

(d) Write x as a sum of 2 vectors, one in L and one perpendicular to L

Trick: 
$$x = \hat{x} + (x - \hat{x}) = \begin{pmatrix} 3/5 \\ 6/5 \end{pmatrix} + \begin{pmatrix} 2/5 \\ -1/5 \end{pmatrix}$$
  
in L  $\perp$  to L

(Similar in physics to decomposing a force into tangential and normal component)

III- OP ON ≥ 2 VECTORS



$$= (3/2) \begin{bmatrix} 1\\1\\0 \end{bmatrix} + (5/2) \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$
$$= \begin{bmatrix} -1\\4\\0 \end{bmatrix}$$
$$(b) Find the distance between x and W$$
$$||x - \hat{x}|| = || \begin{bmatrix} -1\\4\\3 \end{bmatrix} - \begin{bmatrix} -1\\4\\0 \end{bmatrix} || = || \begin{bmatrix} 0\\0\\3 \end{bmatrix} || = 3$$
$$(c) Find a vector \perp to u and v$$
$$x - \hat{x} = \begin{bmatrix} 0\\0\\3\\3 \end{bmatrix}$$
$$(d) Write x as the sum of 2 vectors, one in W and one \perp to W$$
$$x = \hat{x} + (x - \hat{x})$$
$$in W = in W^{\perp}$$
$$IV-ORTHOGONAL MATRICES$$
Related to this is the concept of orthogonal matrices  
Example: Let Q = 
$$\begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2}\\1/\sqrt{3} & 0\\1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} = [u | v]$$
$$u = v$$



Here:  

$$QQ^{T} \times = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$= \dots = \begin{bmatrix} 1 \\ 2/3 \\ 1/6 \end{bmatrix}$$
(c) Calculate ||Qx||  
FACT: ||Qx|| = ||x|| = ||\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$Why? ||Qx||^{2} = (Qx) \cdot (Qx) = (Qx)^{T} Qx = x^{T} Q^{T} Qx = x^{T} I x$$

$$= x^{T} x = x \cdot x = ||x||^{2}$$