## LECTURE 24: ORTHOGONAL PROJECTIONS

## I- W

Definition: If $W$ is a subspace of $R^{n}$, then
$\mathrm{W}^{\perp}=$ All the vectors that are $\perp$ to (all the vectors) in W

Picture:


Example: If $W=\operatorname{Span}\left\{\left[\begin{array}{c}U \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$ find (a basis for) $W^{\perp}$
Enough to find all the vectors perpendicular to $u$ and $v$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 1
\end{array}\right]
$$

$$
W^{\perp}=\operatorname{Nul}\left(A^{\top}\right)=\operatorname{Nul}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]=\ldots=\operatorname{span}\left\{\left[\begin{array}{c}
\swarrow \\
-1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\text { Ans } \\
0 \\
-1 \\
0 \\
1
\end{array}\right]\right)
$$

Note: In terms of matrices, $W=\operatorname{Col}(A)$ and we showed $W^{\perp}=\operatorname{Nul}\left(A^{\top}\right)$

Hence

$$
\left(\operatorname{Col}(\overparen{A}) I^{1}\right)=\operatorname{Nul}\left(A^{\top}\right)
$$

Mnemonic: Put that frown upside down, put $\perp$ inside your matrix to become T

Also

$$
\operatorname{Nul}(\mathscr{A}) \sqrt{ } 1=\operatorname{Col}\left(A^{\top}\right) \quad\left(=" \operatorname{Row}(A)^{\prime}\right)
$$

II- OP ON A LINE
Today: Orthogonal Projections, which is a neat way of "squishing" a vector on another vector (this will have LOTS of insane applications, see next 2 lectures)

Goal: Given a point $x$ and a line $L$, want to "squish" $x$ on $L$
Picture:


Many different ways of doing that, but there is one way that is optimal

Definition: The orthogonal projection $\hat{x}$ of $\times$ on $L$ is the point on $L$ such that $\underbrace{x-\hat{x} \perp L}$
(1)
(2)

Example: Calculate the $O P \times$ of $x=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ on $L=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$
WTF
(1) $\hat{x}$ is in $L$, so $x=$ a $u$ for some a

$$
\begin{aligned}
& \text { (2) } x-\hat{x} \perp L \text {, so }(x-\hat{x}) \perp u \\
& \Rightarrow(x-\hat{x}) \cdot u=0 \\
& \Rightarrow(x-a u) \cdot u=0 \\
& \Rightarrow x \cdot u-a u \cdot u=0 \\
& \Rightarrow a u \cdot u=x \cdot u \\
& \Rightarrow a=\frac{x \cdot u}{u \cdot u} \quad \text { (OMG, the hugging formula!!!!) }
\end{aligned}
$$

FACT: $\hat{x}=\left(\frac{x \cdot u}{u \cdot u}\right)^{u}$
Here: $\hat{x}=\left(\frac{\left[\begin{array}{l}1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]}{\left[\begin{array}{l}1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]}\right)\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 / 5 \\ 6 / 5\end{array}\right]$
Do NOT blindly memorize this! ALWAYS think: $\hat{x}$ is some
multiple of $u(x=a u)$, where the multiple is given by hugging!
(b) Calculate the (smallest) distance between $\times$ and $L$
(Don't memorize, look at the picture above!)
Ans: $\|x-\hat{x}\|=\left\|\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}3 / 5 \\ 6 / 5\end{array}\right]\right\|=\left\|\left[\begin{array}{c}2 / 5 \\ -1 / 5\end{array}\right]\right\|=\sqrt{\frac{5}{25}}=\frac{1}{\sqrt{5}}$
(So in this sense, $\hat{x}$ is optimal $\rightarrow$ 6.5)
(c) Find a vector perpendicular to $u=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

Ans: $x-\hat{x}=\left[\begin{array}{c}2 / 5 \\ -1 / 5\end{array}\right]$
(Gives an easy way of building perpendicular vectors -> 6.4)
(d) Write $x$ as a sum of 2 vectors, one in $L$ and one perpendicular to $L$

Trick: $\begin{aligned} x=\hat{x}+(x-\hat{x})= & {\left[\begin{array}{l}3 / 5 \\ 6 / 5\end{array}\right]+} \\ & \text { in } L\end{aligned}$
(Similar in physics to decomposing a force into tangential and normal component)

The beautiful thing is that we can do the same procedure not only for lines, but also for planes (and really any subspace)
Example: Let $W=$ Span $\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$

$$
x=\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]
$$

$\stackrel{v}{c}$
(a) Find the OP $\hat{x}$ of $x$ on $W$


Definition: $\hat{x}$ is the vector in $W$ such that $(x-\hat{x}) \perp u \& v$
(1)
(2)

$$
\left.\left.\begin{array}{rl}
\text { By (1), } \hat{x} & =a u+b v \\
\text { By (2), } \hat{x} & =\left(\frac{x \cdot u}{u \cdot u}\right) u+\left(\frac{x \cdot v}{v \cdot v}\right) v \\
& =\left(\frac{\left(\begin{array}{l}
-1 \\
4 \\
3
\end{array}\right] \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)}{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}\right)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\left(\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right) \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right. \\
{\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right]}
\end{array}\right)\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right)
$$

$$
\begin{aligned}
& =(3 / 2)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+(5 / 2)\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
4 \\
0
\end{array}\right]
\end{aligned}
$$

(b) Find the distance between $x$ and $W$

$$
\|x-\hat{x}\|=\left\|\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]-\left[\begin{array}{c}
-1 \\
4 \\
0
\end{array}\right]\right\|=\left\|\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]\right\|=3
$$

(c) Find a vector $\perp$ to $u$ and $v$

$$
x-\hat{x}=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]
$$

(d) Write $x$ as the sum of 2 vectors, one in $W$ and one $\perp$ to $W$

$$
\begin{aligned}
& x=\hat{x}+(x-\hat{x}) \\
& \text { in } W \quad \text { in } W^{\perp}
\end{aligned}
$$

## IV- ORTHOGONAL MATRICES

Related to this is the concept of orthogonal matrices
Example: Let $Q=\left[\begin{array}{cc}1 / \sqrt{3} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & 0 \\ 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right]=[u \mid v]$

NOTICE: The columns of $Q$ are orthonormal
(a) Find $Q^{\top} Q=I$

Orthonormal
Why? $Q^{\top} Q=\left[\frac{u}{v}\right] \quad[u \mid v]=\left[\begin{array}{cc}u \cdot u & u \cdot v \\ v \cdot u & v \cdot v\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
(b) Find $Q Q^{\top} x$ where $x=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

WARNING: In general, $Q Q^{\top} \neq I$

$$
\begin{aligned}
Q Q^{\top} x & =[u \mid v]\left[\frac{u \mid}{v}\right][\sqrt{x}] \\
& =\left[\left[\left.\begin{array}{l}
u \\
\hline
\end{array} \right\rvert\, v\right]\left[\begin{array}{c}
u \cdot x \\
v \cdot x
\end{array}\right]\right. \\
& =(u \cdot x)[u)+(v \cdot x) v \\
& =\left(\frac{x \cdot u}{u \cdot u}\right) u+\left(\frac{x \cdot v}{v \cdot v}\right) v \\
=1 & =1 \\
& =\hat{x}!!!
\end{aligned}
$$

Fact: $Q Q^{\top} x=\hat{x}=O P$ on $W=\operatorname{Span}\{u, v\}=\operatorname{Col}(Q)$

Here:

$$
\begin{aligned}
Q Q^{\top} x & =\left[\begin{array}{cc}
1 / \sqrt{3} & -1 / \sqrt{2} \\
1 / \sqrt{3} & 0 \\
1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& =\ldots=\left[\begin{array}{c}
1 \\
2 / 3 \\
1 / 6
\end{array}\right]
\end{aligned}
$$

(c) Calculate \|xl\|

$$
\text { FACT: }\|Q x\|=\|x\|=\|\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]^{\|=\sqrt{2}}
$$

Why? $\|Q x\|^{2}=(Q x) \cdot(Q x)=(Q x)^{\top} Q x=x^{\top} Q^{\top} Q x=x^{\top} I x$

$$
=x^{\top} x=x \cdot x=\|x\|^{2}
$$

