LECTURE 26: LEAST-SQUARES

Welcome to the culmination of our Math $3 A$ adventure, the reason why we've been working so hard all quarter!
Because so far we have done the improbable, but today we will do the impossible: we'll solve systems... that have no solutions!

I- PRELUDE

Example: Consider the system

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]}_{A} \underbrace{y}_{x=l_{b}^{x}}]
\end{aligned}=\underbrace{\left[\begin{array}{l}
5 \\
6
\end{array}\right]}
$$

Fact: $A x=b$ is consistent $\Leftrightarrow=b$ is in $\operatorname{Col}(A)$
(And this fact will help us solve inconsistent systems)

Today: Will present you 2 methods for solving inconsistent systems, need to know both

II- THE SLOW WAY (METHOD 1)

(Slow, but more intuitive)
Example: "Solve" $A x=b$
$A=\left[\begin{array}{rr}1 & 1 \\ 1 & -1 \\ -1 & 1 \\ 1 & 1\end{array}\right]$
$b=\left[\begin{array}{l}2 \\ 4 \\ 6 \\ 8\end{array}\right]$
π^{u}

Need to be
orthogonal!!!
NO SOLUTION!! ;
But what if you have a job and your boss tells you "Solve this system or you'll be fired" ??? Than what could you do?

Goal: Find the best non-solution! (= best substitute for a solution)

Important observation:

The reason $A x=b$ has no solution is because b is not in $\operatorname{Col}(A)$

So just force b to be in $\operatorname{Col}(A)$ by calculating \hat{b} !

STEP 1
Calculate $\hat{b}=O P$ of b on $\operatorname{CoI}(A)=\operatorname{Span}\{u, v\}$

$$
\begin{aligned}
\hat{b} & \left.=\left(\frac{b \cdot u}{u \cdot u}\right) u+\left(\frac{b \cdot v}{v \cdot v}\right) v \quad \quad \text { (because } u \text { and } v \text { are } \perp\right) \\
& =\frac{\left[\begin{array}{c}
2 \\
4 \\
6 \\
8
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]}{\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]+\frac{\left[\begin{array}{c}
2 \\
4 \\
6 \\
8
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]} \\
& =\left(\begin{array}{c}
\frac{8}{4} \\
2
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
5 \\
-1 \\
1 \\
5
\end{array}\right]
\end{aligned}
$$

Upshot: Since \hat{b} is in $\operatorname{Col}(A), A x=\hat{b}$ HAS a solution!

STEP 2 Solve $A x=\hat{b}$

$$
\begin{aligned}
& \left.\begin{array}{cc|c}
A & \hat{b} \\
1 & 1 & 5 \\
1 & -1 & -1 \\
-1 & 1 & 1 \\
1 & 1 & 5
\end{array}\right] \quad \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \hat{x}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& \rightarrow \text { LEAST SQUARES SOLUTION OF } A x=b \\
& \text { (= "best" non-solution, in the following sense:) }
\end{aligned}
$$

(b) Find the least-squares error

Answer: $\|A \hat{x}-b\|=\|\hat{b}-b\|=\left\|\left[\begin{array}{c}5 \\ -1 \\ 1 \\ 5\end{array}\right]-\left[\begin{array}{l}2 \\ 4 \\ 6 \\ 8\end{array}\right]\right\|$

$$
\begin{aligned}
& =11\left[\begin{array}{c}
3 \\
-5 \\
-5 \\
-3
\end{array}\right] \| \\
& =\sqrt{68}
\end{aligned}
$$

Interpretation: Among all the possible values of x, it's \hat{x} that makes the error $\|A x-b\|$ the smallest

Picture:

$\operatorname{Col}(A)$

In fact, if $A x=b$ actually has a solution, then $A x-b=0$
$\Rightarrow|\mid A x-b \|=0$ (no error)

III- THE FAST WAY (METHOD 2)

Works for ANY A (not just with orthogonal columns), but not 100% clear why it works (see end of notes if you're curious why it works)

Example: (a) Find the least-squares solution to $A x=b$

$$
A=\left[\begin{array}{rr}
1 & 3 \\
1 & -1 \\
1 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]
$$

TRICK: Multiply $A x=b$ by A^{\top}

$$
\begin{aligned}
& A^{\top} A x=A^{\top} b \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr}
3 & 3 \\
3 & 11
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
6 \\
14
\end{array}\right]} \\
& {\left[\begin{array}{rr|r}
3 & 3 & 6 \\
3 & 11 & 14
\end{array}\right] \quad-->\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]} \\
& \hat{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { woW!!!! }
\end{aligned}
$$

(b) Find the least-squares error

$$
\begin{aligned}
\|A \hat{x}-b\| & =\left\|\left[\begin{array}{rr}
1 & 3 \\
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]-\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{l}
-1 \\
-1 \\
2
\end{array}\right]\right\| \\
& =\sqrt{6}
\end{aligned}
$$

Do we always find a solution with this method? Not always, but:

Fact: If the columns of A are LI, then there is always a unique leastsquares solution.

IV- LEAST-SQUARES AND QR
Last time we found the QR decomposition of a matrix, and now we can finally see why it's useful!

Example: Use $A=Q R$ to find the least-squares solution of $A x=b$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & 3 \\
2 & 4 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3 \\
1 / 3 & -2 / 3
\end{array}\right]} & \mathrm{Q}
\end{array} \begin{array}{cc}
{\left[\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
9 \\
9 \\
9
\end{array}\right]\right. \\
& \text { (orthonormal (upper } \\
& \text { columns) triangular) }
\end{aligned}
$$

(We found Q by applying the $G-S$ process to the columns of A, and we would R using $R=Q^{\top} A$)

Notice: If $A=Q R$, then

$$
\begin{aligned}
& A^{\top} A \hat{x}=A^{\top} b \\
& \Rightarrow(Q R)^{\top}(Q R) \hat{x}=(Q R)^{\top} b \\
& \Rightarrow R^{\top} Q^{\top} Q R \hat{x}=R^{\top} Q^{\top} b \\
& \Rightarrow R^{\top} \\
& \Rightarrow R^{\top} R \hat{x}=R^{\top} Q^{\top} b \\
& B u t R^{\top}=\left[\begin{array}{ll}
3 & 0 \\
5 & 1
\end{array}\right] \quad \text { invertible! (not always, but usually the case) } \\
& \Rightarrow R / R \hat{x}=R^{\nmid} Q^{\top} b \\
& \sqrt{n \hat{v}-n^{\top} n}
\end{aligned}
$$

$\Rightarrow R \hat{x}=Q^{\top} b$
$\left[\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ccc}2 / 3 & 2 / 3 & 1 / 3 \\ -1 / 3 & 2 / 3 & -2 / 3\end{array}\right]\left[\begin{array}{l}9 \\ 9 \\ 9\end{array}\right]$
$\left[\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}15 \\ -3\end{array}\right]$
SUPER easy to solve! (because R is upper triangular), don't even need row-reductions!
$\begin{aligned} 3 x+5 y & =15 \Rightarrow 3 x=15-5 y=15-5(-3)=30 \Rightarrow x=10 \\ y & =-3\end{aligned}$
$\hat{x}=\left[\begin{array}{l}10 \\ -3\end{array}\right]$
So $Q R$ helps us solve least-squares in an easy way!
(And that's in fact how computers solve least-squares problems)

V- LINEAR MODELS

I've saved the best application for last, because here's the single most useful application in linear algebra. You literally see this everywhere in your life!

Example: Find the equation of the line that best fits the points

$$
(1,0),(2,1),(4,2),(5,3),(6,5)
$$

Picture:

(This is the line that Excel or R gives you when you ask to fit the points on a line)

Suppose the points actually are on the line $y=a x+b$
Then $\left\{\begin{array}{l}a(1)+b=0 \quad \leadsto(1,0) \\ a(2)+b=1 \quad \leadsto(2,1) \\ a(4)+b=2 \\ a(5)+b=3 \\ a(6)+b=5\end{array}\right.$

$$
\underbrace{\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
4 & 1 \\
5 & 1 \\
6 & 1
\end{array}\right]} \underbrace{\left[\begin{array}{l}
a \\
b
\end{array}\right]}=\underbrace{\left[\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
5
\end{array}\right]}
$$

Solve using least-squares:

$$
\left.\left.\right] \begin{array}{l}
77 / 86 \\
-44 / 43
\end{array}\right] \approx\left[\begin{array}{l}
0.895 \\
-1.023
\end{array}\right]
$$

Answer:

$$
y=a x+b \approx 0.895 x-1.023
$$

And with this we're officially done with the material of the course!!!
Congratulations, you made it!!!

The End

OPTIONAL: Why the Fast Method Works:

Suppose $A=Q R$

$$
\begin{aligned}
& \text { Then } \begin{aligned}
\hat{b} & =O P \text { of } b \text { on } \operatorname{Col}(A) \quad(=\operatorname{Col}(Q), \text { by construction of } Q) \\
& =Q Q^{\top} b \quad \text { (since the columns of } Q \text { are orthonormal) }
\end{aligned} \\
& \text { So } \hat{b}
\end{aligned}
$$

So $\hat{A x}=\hat{\sim} \quad$ (METHOD 1)

$$
\Rightarrow A \hat{x}=Q Q^{\top} b
$$

$$
\Rightarrow A^{\top} A \hat{x}=A^{\top} Q Q^{\top} b
$$

But

$$
\begin{aligned}
A^{\top} Q Q^{\top} b & =(Q R)^{\top} Q Q^{\top} b \\
& =R^{\top} \underbrace{Q^{\top} Q} Q^{\top} b \\
& =R^{\top} Q^{\top} b \\
& =(Q R)^{\top} b \\
& =A^{\top} b
\end{aligned}
$$

$$
\Rightarrow \quad A^{\top} A \hat{x}=A^{\top} b
$$

(METHOD 2)

