LECTURE 27: FINAL EXAM REVIEW (I)

Congratulations, we are done with the course, so the next 3 lectures will be review. There is just one little thing I have to wrap up about orthogonal matrices (which will be relevant today)

I- ORTHOGONAL MATRICES

Definition: If Q is SQUARE and has orthoNORMAL columns, then Q is an orthoGONAL matrix

Example: $Q=\left[\begin{array}{llll}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / & \sqrt{2}\end{array}\right]$
(a) Find Q^{-1}
$Q^{\top} Q=I A N D Q$ is SQUARE
$\Rightarrow Q^{-1}=Q^{\top}=\left[\begin{array}{ll}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$
(b) Find $Q Q^{\top}$

Since $Q^{-1}=Q^{\top} \Rightarrow Q Q^{\top}=Q Q^{-1}=I \Rightarrow Q Q^{\top}=I$
Important: Q has to be square! In general, $Q Q^{\top} \neq I$, $Q Q^{\top} x$ is $O P$ of x on $\operatorname{Col}(Q)$)
(c) Find $\operatorname{det}(Q)$
$Q^{\top} Q=I \Rightarrow \operatorname{det}\left(Q^{\top} Q\right)=\operatorname{det}(I)$

$$
\begin{aligned}
& \Rightarrow \operatorname{det}\left(Q^{\top}\right) \operatorname{det}(Q)=1 \\
& \Rightarrow \operatorname{det}(Q) \operatorname{det}(Q)=1 \\
& \Rightarrow(\operatorname{det}(Q))^{2}=1 \\
& \Rightarrow \operatorname{det}(Q)= \pm 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) Calculate }\|Q x\|, \quad x=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
& \text { FACT: }\|Q x\|=\|x\| \\
& \text { Why? }\|Q x\|^{2}=(Q x) \cdot(Q x) \quad\left(\|u\|^{2}=u \cdot u\right) \\
& =(Q x)^{\top}(Q x) \quad\left(u \cdot v=u^{\top} v\right) \\
& =x^{\top} Q^{\top} Q x \quad\left((A B)^{\top}=B^{\top} A^{\top}\right) \\
& =x^{\top} I x \\
& =x^{\top} x \\
& =\|x\|^{2} \\
& \Rightarrow\|Q x\|=\|x\|=\left\|\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\|=\sqrt{25}=5
\end{aligned}
$$

Note: This last fact is also true for nonsquare matrices.

For the rest of today, we'll review eigenvectors and orthogonality (and I'll sneak in something useful :))

II- EIGENVALUES

Example: Find the eigenvalues of

$$
A=\left[\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right]
$$

Aside: Notice that A is symmetric ($A^{\top}=A$), so today's theme is about symmetric matrices (and what makes them special)

$$
\begin{aligned}
& |\lambda I-A|=\left|\begin{array}{ccc}
\lambda-3 & 2 & -4 \\
2 & \lambda-6 & -2 \\
-4 & -2 & \lambda-3
\end{array}\right| \\
& =(\lambda-3)\left|\begin{array}{cc}
\lambda-6 & -2 \\
-2 & \lambda-3
\end{array}\right| \begin{array}{c}
-2 \\
\end{array}\left|\begin{array}{cc}
2 & -2 \\
-4 & \lambda-3
\end{array}\right|-4\left|\begin{array}{cc}
2 & \lambda-6 \\
-4 & -2
\end{array}\right| \\
& =(\lambda-3)[(\lambda-6)(\lambda-3)-4]-2[2(\lambda-3)-8]-4[-4+4(\lambda-6)] \\
& =(\lambda-3)\left[\lambda^{2}-9 \lambda+18-4\right]-2[2 \lambda-6-8]-4[-4+4 \lambda-24] \\
& =(\lambda-3)\left[\lambda^{2}-9 \lambda+14\right]-2[2 \lambda-14]-4[4 \lambda-28] \\
& =(\lambda-3)(\lambda-7)(\lambda-2)-4(\lambda-7)-16(\lambda-7) \\
& =(\lambda-7)[(\lambda-3)(\lambda-2)-4-16] \\
& =(\lambda-7)\left[\lambda^{2}-5 \lambda+6-20\right] \\
& =(\lambda-7)\left(\lambda^{2}-5 \lambda-14\right) \\
& =(\lambda-7)(\lambda-7)(\lambda+2) \\
& =(\lambda-7)^{2}(\lambda+2)=0 \\
& \Rightarrow(\lambda=7 \text { and } \lambda=-2
\end{aligned}
$$

III- DIAGONALIZATION
Example: With A as above, find D and P with $A=P D P^{-1}$

$$
D=\left[\begin{array}{ccc}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

$$
\begin{aligned}
\lambda=7 \quad \operatorname{Nul}(7 I-A) & =\operatorname{Nul}\left[\begin{array}{ccc}
7-3 & 2 & -4 \\
2 & 7-6 & -2 \\
-4 & -2 & 7-3
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{ccc}
4 & 2 & -4 \\
2 & 1 & -2 \\
-4 & -2 & 4
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\operatorname{Nul}\left[\begin{array}{ccc}
1 & 1 / 2 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& x+(1 / 2) y-z=0 \Rightarrow x=(-1 / 2) y+z \\
& x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-1 / 2 y+z \\
y \\
y
\end{array}\right]=y\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& E_{7}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} \\
& (\times 2)
\end{aligned}
$$

(Please rescale!)
(Please rescale!)

Similarly

$$
\begin{aligned}
& E_{-2}=\operatorname{span}\left\{\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right)\right\} \\
& P=\left[\begin{array}{ccc}
-1 & 1 & -2 \\
2 & 0 & -1 \\
0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

(7) (7) (-2)

IV-GRAM-SCHMIDT
(What happens if we apply Gram-Schmidt to each eigenspace?)
$\left.\left.\left.\left.\begin{array}{l}\text { Example: } \\ \text { (a) Find an orthonormal basis for } E_{7}=S p a n\end{array} \right\rvert\, \begin{array}{c}-1 \\ -1 \\ 2 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ u_{1}\end{array}\right] \begin{array}{l}U_{2} \\ 0 \\ 1\end{array}\right]\right\}$

$$
v_{1}=u_{1}=\left[\begin{array}{r}
-1 \\
2 \\
0
\end{array}\right] \text { (cross out } u_{1} \text {) }
$$

$$
\begin{aligned}
& \hat{u_{2}}=\left(\frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1}=\frac{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]}{\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]=\frac{-1}{5}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / 5 \\
-2 / 5 \\
0
\end{array}\right] \\
& \text { (do not rescale) } \\
& v_{2}=u_{2}-\hat{u_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{c}
1 / 5 \\
-2 / 5 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 / 5 \\
2 / 5 \\
1
\end{array}\right] \sim\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right] \text { (ok to rescale) }
\end{aligned}
$$

$$
\text { Check: } v_{1}, v_{2}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
2 \\
5
\end{array}\right]=0
$$

$$
w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=1 / \sqrt{5}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / \sqrt{5} \\
2 / \sqrt{5} \\
0
\end{array}\right]
$$

$$
w_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=1 / \sqrt{45}\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{c}
4 / \sqrt{45} \\
2 / \sqrt{45} \\
5 / \sqrt{45}
\end{array}\right]
$$

(b) Find an orthonormal basis for $E_{-2}=$ Span $\left\{\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]\right\}$
u_{1}

$$
\begin{aligned}
& v_{1}=u_{1}=\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right] \quad \text { (Note: }\left\{v_{1}\right\} \text { is orthogonal!) } \\
& w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=(1 / 3)\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right]
\end{aligned}
$$

V- SYMMETRIC MATRICES

Example: What can you say about

$$
\begin{gathered}
P=\left[\begin{array}{ccc}
-1 / \sqrt{5} & 4 / \sqrt{45} & -2 / 3 \\
2 / \sqrt{5} & 2 / \sqrt{45} & -1 / 3 \\
0 & 5 / \sqrt{45} & 2 / 3
\end{array}\right] \\
(7) \\
(7)
\end{gathered}
$$

Columns of P are orthonormal
$\Rightarrow P$ is an orthogonal matrix
$\Rightarrow P^{-1}=P^{\top}$

Aside:

1) This is really cool! After doing G-S, we know that for each eigenspace, the vectors are orthonormal, but there's no reason why all 3 of them have to be orthonormal, but here for symmetric matrices it's true!
2) Also, usually for matrices, you only have $A=P D P^{-1}$, but with this technique (for symmetric matrices), you get $A=\operatorname{PDP}^{\top}$ (this is called orthogonally diagonalizable)

Example: Show $B=P D P^{\top}$ is always symmetric $\left(B^{\top}=B\right)$
$B^{\top}=\left(P D P^{\top}\right)^{\top}=\left(P^{\top}\right)^{\top} D^{\top} P^{\top}=P D^{\top} P^{\top}=P D P^{\top}=B$

$$
\text { (} D^{\top}=D \text { since } D \text { is diagonal) }
$$

(So symmetric is the SAME as orthogonally diagonalizable, WOW)

