Math 112A - Homework 8

Peyam Tabrizian

Thursday, December 5, 2019

Congratulations for making it so far, this is your final homework assignment! I am so proud of you $)^{-}$

Reading: Sections 6.1 and 6.2. Do NOT read 6.3; all you need to know is the statement of the mean-value property (center of page 169). In 6.1 , know the statement of the maximum principle (ignore its proof) and know how to derive uniqueness from it. In 6.2, know invariance in 2 dimensions, but ignore invariance in 3 dimensions except how to derive your solution given equation (6). In section 6.2, ignore Example 2; also I won't ask you to calculate double Fourier series, but in theory, you should be able to derive the coefficients. You will continue with the rest of chapter 6 in 112B.

Beware: For spherical coordinates, the book uses r instead of ρ and switches θ and ϕ. Since we'll set things equal to 0 , it won't really matter.

Important: To simplify your task, for this HW ONLY, in 6.2 you don't need to show the 3 cases, but on the exam you'll definitely have to! Also, there are more hints below, after the additional problems.

- Section 6.1: 2, 5, 7, 11 (ignore the question "Also show...") AP1, AP2
- Section 6.2: 3, 4, 7(a)
- Section 6.3: 1

Additional Problem 1: Here is a more natural way of deriving the solutions of $\Delta u=0$. Here we illustrate the case $n=3$, but the proof is valid for any n.

Suppose $u=u(x, y, z)$ satisfies $u_{x x}+u_{y y}+u_{z z}=0$ and suppose $u=v\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$ for some $v=v(r)$.

Find the ODE that v satisfies, and solve it, and finally solve for u.
Hint: Use the Chen Lu to calculate $u_{x x}$ in terms of v and then just guess the formulas for $u_{y y}$ and $u_{z z}$.

Additional Problem 2: We say $u=u(x, y, z)$ is subharmonic if $-\Delta u \leq 0$.
(a) Suppose u is harmonic, $f^{\prime \prime} \geq 0$, and let $v=f(u)$. Show v is subharmonic.
(b) Suppose u is harmonic and let $w=\left(u_{x}\right)^{2}+\left(u_{y}\right)^{2}+\left(u_{z}\right)^{2}$. Show w is subharmonic

Hints to the book problems:

6.1.2 Don't do it from scratch; use the Laplacian in spherical coordinates (equation (6)) and set all the θ and ϕ terms to 0 . It's also useful to first calculate v_{r} and $v_{r} r$.
6.1.5 Use the Laplacian in polar coordinates (equation (5)) and set all the θ terms to 0
6.1.7 Use the Laplacian in spherical coordinates (equation (6)) and set all the θ and ϕ terms to 0 .
6.2.4 First solve $v_{x x}+v_{y y}=0$ with

$$
v(x, 0)=x, v(x, 1)=0, v_{x}(0, y)=0, v_{x}(1, y)=0
$$

and then $w_{x x}+w_{y y}=0$ with

$$
w(x, 0)=0, w(x, 1)=0, w_{x}(0, y)=0, w_{x}(1, y)=y^{2}
$$

and use $u=v+w$.
6.2.7 In this problem, it's (exceptionally) useful to not write your solutions in terms of cosh and sinh, but instead to leave it in terms of exponentials. Notice that terms with $e^{c y}$ with $c>0$ don't go to 0 as $y \rightarrow \infty$.
6.3.1 (a) Maximum principle, (b) mean-value formula (center of page 169).

