PROBLEM 1: (a) True, (b) False, (c) True, (d) False, (e) False

OPTIONAL Justifications:
(a) A has at most 4 pivots, hence at least 3 free variables
(b) $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$

Then there is 1 free variable ($\Rightarrow A x=0$ has a nonzero solution) BUT also a pivot in every row ($\Rightarrow A x=b$ is consistent for all b)
(c) T onto $\Rightarrow>A(=$ matrix of T) is invertible (by the IMT) \Rightarrow T is one-to-one (by the IMT again)
(d) $\operatorname{det}(3 I)=\operatorname{det}\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]=27$ but $3 \operatorname{det}(I)=3(1)=3$
(e) $A x=0 \Rightarrow\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow y=0 \Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]=x\left[\begin{array}{l}1 \\ 0\end{array}\right]$

PROBLEM 2:
$[A \mid I]=\left\{\left[\begin{array}{ccc|ccc}-5 & -1 & 7 & 1 & 0 & 0 \\ 3 & 1 & -2 & 0 & 1 & 0 \\ 1 & 0 & -2 & 0 & 0 & 1\end{array}\right]\right.$

$$
\rightarrow x^{x 5}\left({ } ^ { x - 3 } \left(\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 0 & 0 & 1 \\
3 & 1 & -2 & 0 & 1 & 0 \\
-5 & -1 & 7 & 1 & 0 & 0
\end{array}\right]\right.\right.
$$

$$
\longrightarrow \quad x \backslash \downharpoonleft\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 0 & 0 & 1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & -1 & -3 & 1 & 0 & 5
\end{array}\right]
$$

$$
\left.\longrightarrow \quad\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 0 & 0 & 1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 0 & 1 & 1 & 1 & 2
\end{array}\right] \uparrow x-4\right\} \times 2
$$

$$
\rightarrow \quad \underbrace{\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 2 & 5 \\
0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
-4 & -3 & -11 \\
1 & 1 & 8
\end{array}\right]}_{\boldsymbol{I}} \underbrace{\underbrace{-1}}_{A^{-1}}
$$

Hence $\quad A^{-1}=\left[\begin{array}{ccc}2 & 2 & 5 \\ -4 & -3 & -11 \\ 1 & 1 & 8\end{array}\right]$

PROBLEM 3:
$\boldsymbol{A}=\left[\begin{array}{ccccc}2 & -6 & 12 & 4 & 40 \\ -2 & 6 & -11 & -8 & -45 \\ 4 & -12 & 24 & 10 & 84 \\ -2 & 6 & -12 & -4 & -40\end{array}\right] \rightarrow\left[\begin{array}{ccccc}11 & -3 & 6 & 2 & 20 \\ 0 & 0 & 1 & -4 & -5 \\ 0 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right](\div 2)$
(a) Continue row-reducing:

$$
\rightarrow\left[\begin{array}{ccccc}
1 & -3 & 6 & 2 & 20 \\
0 & 0 & 1 & -4 & -5 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\{(x 4))(x-2)
$$

$$
\rightarrow\left[\begin{array}{ccccc}
1 & -3 & 6 & 0 & 16 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Gamma(x-6)
$$

$$
\rightarrow\left[\begin{array}{ccccc}
1 & -3 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \Longrightarrow\left\{\begin{array} { c }
{ x - 3 y - 2 s = 0 } \\
{ z + 3 s = 0 } \\
{ t + 2 s = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
x=3 y+2 s \\
z=-3 s \\
t=-2 s
\end{array}\right.\right. \\
& \underline{\boldsymbol{X}}=\left[\begin{array}{l}
x \\
y \\
z \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
3 y+2 s \\
y \\
-3 s \\
-2 s \\
s
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Basis for $\operatorname{Nul}(A): \quad\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -3 \\ -2 \\ 1\end{array}\right]\right\}$
(b) $\operatorname{Dim}(\operatorname{Nul}(A))=2$
(c) Pivots in Columns 1, 3, 4, hence:
Basis for $\operatorname{Col}(A):\left\{\left[\begin{array}{c}2 \\ -2 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{c}12 \\ -11 \\ 24 \\ -12\end{array}\right],\left[\begin{array}{c}4 \\ -8 \\ 10 \\ -4\end{array}\right]\right\}$
(d) $\operatorname{Rank}(A)=3$ (= \# of Pivots)
(e) $\operatorname{dim}(\operatorname{Nul}(A))+\operatorname{rank}(A)=n$

PROBLEM 4:

(a) There are at most 3 pivots, so not a pivot in every column, hence never one to one (by Column Theorem)

Answer: No h
(b) Row-reduce A

$$
\underset{(x-3)}{(x-2)}\left(\bigcup\left[\begin{array}{llll}
1 & -3 & -2 & 2 \\
2 & -6 & -3 & 7 \\
3 & -9 & -6 & h
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & -2 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & (h-6
\end{array}\right]\right)
$$

Need: Pivot in every row $\Rightarrow h-6 \neq 0 \Rightarrow h \neq 6$

PROBLEM 5:

(a) TRUE

$$
\begin{aligned}
& Q^{\top} Q=I \\
\Rightarrow & \operatorname{det}\left(Q^{\top} Q\right)=\operatorname{det}(I) \\
\Rightarrow & \operatorname{det}\left(Q^{\top}\right) \operatorname{det}(Q)=1 \\
\Rightarrow & \operatorname{det}(Q) \operatorname{det}(Q)=1 \\
\Rightarrow & (\operatorname{det}(Q))^{2}=1 \\
\Rightarrow & \operatorname{det}(Q)= \pm 1
\end{aligned}
$$

(b) FALSE

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

PROBLEM 6:
(a) $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ 0\end{array}\right] \quad T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ b\end{array}\right] \quad A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$
(b)

$$
\begin{aligned}
\operatorname{Area}\left(R^{\prime}\right) & =|\operatorname{det}(A)| \operatorname{Area}(R) \\
& =\left|\operatorname{det}\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\right| \pi 1^{2} \\
& =|a b| \pi \\
& =\pi a b \quad(\text { since } a, b>0)
\end{aligned}
$$

