LECTURE 27: THE LAPLAST ONE

Monday, November 25, 2019 5:23 PM

Today: Three little remaining topics related to Laplace

I- 3 DIMENSIONS

Previously: Solved Laplace's equation in 2 dimensions by converting it into polar coordinates. The same idea works in 3 dimensions if you use spherical coordinates.

Suppose u = u(x,y,z) solves $u_{xx} + u_{yy} + u_{zz} = 0$ in \mathbb{R}^3

Using spherical coordinates, you eventually get

r

(where $r = \sqrt{x^2 + y^2 + z^2}$ and JUNK doesn't depend on r)

If we're looking for radial solutions, we set JUNK = 0

Get $u_{rr} + 2 \quad u_r = 0$ which you can solve to get

 $u(x,y,z) = \frac{-C}{r} + C' \text{ solves } u_{xx} + u_{yy} + u_{zz} = 0$

Finally, setting $C = -1/(4\pi)$ and C' = 0, you get

Fundamental solution of Laplace for n = 3

$$S(x,y,z) = \frac{1}{4\pi r} = \frac{1}{4\pi (x^2 + y^2 + z^2)}$$

r

Note: In n dimensions, get u_{rr} + <u>n-1</u> u_r = 0

=>
$$u(r) = \frac{-C}{r^{n-2}} + C'$$

Why fundamental? Because can build up other solutions from this!

Fun Fact: A solution of $-\Delta$ u = f (Poisson's equation) in \mathbb{R}^n is

$$u(x) = S(x) * f(x) = \int S(x-y) f(y) dy$$

$$R^{N}$$

(Basically the constant is chosen such that $-\Delta S = \delta_0 \leftarrow 0$ (Basically the constant is chosen such that $-\Delta S = \delta_0 \leftarrow 0$)

II- DERIVATION OF LAPLACE

Two goals: Derive Laplace's equation, and also highlight an important structure of $\Delta u = 0$

$$div(F) = (F_1)_{x1} + ... + (F_n)_{xn}$$

Notice: If $u = u(x_1, ..., x_n)$, then $\nabla u = (u_{x1}, ..., u_{xn})$

=> div(
$$\nabla$$
 u) = (u_{x1})_{x1} + ... + (u_{xn})_{xn} = u_{x1 x1} + ... + u_{xn xn} = ∆u

Fact: ∆u = div(√u)

"divergence structure"

In particular, Laplace's equation works very well with the divergence theorem

Divergence Theorem:	$\int F \cdot n dS = \int div(F) dx$	
	bdy D D	

B) DERIVATION

Suppose you have a fluid F that is in equilibrium (think F = temperature or chemical concentration)

Equilibrium means that for any region D, the net flux of F is 0.

equation and even the wave equation!

III- OMG APPLICATION

Saved the best for last :)

 $Gain/Loss = q(x^*)$

Suppose you start at x in D and you perform Brownian (= drunken) motion until you hit the bdy D, at which point you have a gain/loss $g(x^*)$ (think hitting a wall, and $g(x^*)$ = price you have to pay for damages)

In general, this is a random variable, so

Let u(x) = Expected (=Average) Gain/Loss starting at x

INSANE CONSEQUENCE:

Suppose g is zero everywhere, but $g(x^*) > 0$ for some point x^* that is far, far away (think x^* = treasure/jackpot)

Then by positivity u > 0 EVERYWHERE

In particular, for all x, no matter how far, there is always a positive chance of hitting x*, that is of finding the treasure!

The insane thing is not that there is some way of finding the treasure, but that there is a *positive probability* of finding it (so actually **MANY** ways of finding it)

Note: There is a similar interpretation with the heat equation

