LECTURE 27: THE LAPLAST ONE

Today: Three little remaining topics related to Laplace
I- 3 DIMENSIONS

Previously: Solved Laplace's equation in 2 dimensions by converting it into polar coordinates. The same idea works in 3 dimensions if you use spherical coordinates.

Suppose $u=u(x, y, z)$ solves $u_{x x}+u_{y y}+u_{z z}=0$ in R^{3}
Using spherical coordinates, you eventually get

$$
u_{r r}+\frac{2}{r} u_{r}+J U N K=0
$$

(where $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and JUNK doesn't depend on r)
If we're looking for radial solutions, we set JUNK $=0$

Get $u_{r r}+2 \frac{u_{r}}{r}=0$ which you can solve to get

$$
u(x, y, z)=\frac{-C}{r}+C^{\prime} \text { solves } u_{x x}+u_{y y}+u_{z z}=0
$$

Finally, setting $C=-1 /(4 \pi)$ and $C^{\prime}=0$, you get

Fundamental solution of Laplace for $n=3$

$$
S(x, y, z)=\frac{1}{4 \pi r}=\frac{1}{4 \pi \sqrt{x^{2}+y^{2}+z^{2}}}
$$

Note: In n dimensions, get $u_{r r}+n-1 u_{r}=0$

$$
\Rightarrow u(r)=\frac{-C}{r^{n-2}}+C^{\prime}
$$

$$
\Rightarrow \quad S(x)=\frac{\text { Blah }}{r^{n-1}} \quad \text { (for some complicated Blah) }
$$

Why fundamental? Because can build up other solutions from this!
Fun Fact: A solution of $-\Delta u=f$ (Poisson's equation) in R^{n} is
$u(x)=S(x) * f(x)=\int S(x-y) f(y) d y$
\mathbb{R}^{N}
(Basically the constant is chosen such that $-\Delta S=\delta_{0}<-$ Dirac at 0)

II- DERIVATION OF LAPLACE

Two goals: Derive Laplace's equation, and also highlight an important structure of $\Delta u=0$
A) SETTING

Definition: If $F=\left(F_{1}, \ldots, F_{n}\right)$ is a vector field in R^{n}, then

$$
\operatorname{div}(F)=\left(F_{1}\right)_{\times 1}+\ldots+\left(F_{n}\right)_{\times n}
$$

Notice: If $u=u\left(x_{1}, \ldots, x_{n}\right)$, then $\nabla u=\left(u_{x 1}, \ldots, u_{x n}\right)$
$\Rightarrow \operatorname{div}(\nabla u)=\left(u_{x 1}\right)_{\times 1}+\ldots+\left(u_{x n}\right)_{x n}=u_{x 1 \times 1}+\ldots+u_{\times n \times n}=\Delta u$
Fact: $\Delta u=\operatorname{div}(\nabla u) \quad$ "divergence structure"
In particular, Laplace's equation works very well with the divergence theorem

Divergence Theorem:

$$
\int_{b d y} F \cdot n d S=\int_{D} \operatorname{div}(F) d x
$$

B) DERIVATION

Suppose you have a fluid F that is in equilibrium (think F = temperature or chemical concentration)

Equilibrium means that for any region D, the net flux of F is 0 .

That is, for any region D of R^{n}

$$
\int F \cdot n d S=0
$$

Bdy D

Picture: (Think Traffic In = Traffic Out, so on average it's 0)

By the divergence theorem, get

$$
\int_{B O Y D} F \cdot n d S=\int_{D} \operatorname{div}(F) d x=0
$$

This holds for any region D, therefore $\operatorname{div}(F)=0$
Now in applications, we have: $F=-c \nabla u$
for some density u and some $c>0$
(Interpretation: F is proportional to the rate of change of u, but points in the opposite direction since the flow is from regions of higher to lower concentration)
(Note: Depending on the context, this is called Fisk's law of diffusion, Fourier's law of heat conduction, or Ohm's law of electrical conduction)

Therefore $\operatorname{div}(F)=0$

$$
\begin{aligned}
& \Rightarrow \overbrace{\operatorname{div}(-c \nabla u)}=0 \\
& \Rightarrow-\operatorname{div}(\nabla u)=0 \\
& \Rightarrow \Delta u=0
\end{aligned}
$$

Note: The SAME proof can be adapted to derive the heat equation and even the wave equation!

III- OMG APPLICATION

Saved the best for last :) Gain/Loss $=g\left(x^{*}\right)$

Suppose you start at x in D and you perform Brownian (= drunken) motion until you hit the bdy D, at which point you have a gain/loss $g\left(x^{*}\right)$ (think hitting a wall, and $g\left(x^{*}\right)=$ price you have to pay for damages)

In general, this is a random variable, so
Let $u(x)=$ Expected ($=$ Average) Gain/Loss starting at x

FACT: u solves $\left\{\begin{array}{l}\Delta u=0 \text { in } D \\ u=g \text { on bdy } D\end{array}\right.$

Recall: Positivity: If u solves the above and $g \geq 0$ with $g \neq 0$ Then u > 0 everywhere

INSANE CONSEQUENCE:

Suppose g is zero everywhere, but $g\left(x^{*}\right)>0$ for some point x^{*} that is far, far away (think $x^{*}=$ treasure/jackpot)

Picture:

Then by positivity $u>0$ EVERYWHERE

In particular, for all x, no matter how far, there is always a positive chance of hitting x^{*}, that is of finding the treasure!

The insane thing is not that there is some way of finding the treasure, but that there is a positive probability of finding it (so actually MANY ways of finding it)

Note: There is a similar interpretation with the heat equation

Suppose you start at position x and time \dagger (here $D=$ 央), you perform Brownian motion, and at some FIXED time T, I tell you "STOP," and I give you a gain/loss g(x^{*})

Let

$$
u(x, t)=\text { Average gain/loss starting at } x \text { and } t
$$

Then u solves $\begin{cases}u_{t}=u_{x x} & \text { in } R x(0, T) \\ u(x, T)=g(x) & \text { on } R\end{cases}$

(This is called a TERMINAL value problem, as opposed to the INITIAL value problems that we're used to)

Note: Positivity here implies that if $g\left(x^{\star}\right)>0$ somewhere, then u > 0 everywhere, so it will always be possible to reach x^{\star} at time T, no matter which time t you start at!
FAR

And with this we're officially done with the material of the course!!! Congratulations, you made it!!! (2)

The End

