
Today: Three little remaining topics related to Laplace

I- 3 DIMENSIONS

Suppose u = u(x,y,z) solves uxx + uyy + uzz = 0 in R3

Using spherical coordinates, you eventually get

urr + 2 ur + JUNK = 0   

r

(where  r =    x2 + y2 + z2 and   JUNK doesn't depend on r)

If we're looking for radial solutions, we set JUNK = 0

Get urr + 2  ur  = 0 which you can solve to get

r

u(x,y,z) =  -C + C' solves uxx + uyy + uzz = 0

r

Previously: Solved Laplace's equation in 2 dimensions by 

converting it into polar coordinates. The same idea works in 3 

dimensions if you use spherical coordinates.

Finally, setting C = -1/(4π) and C' = 0, you get 
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Note: In n dimensions, get urr + n-1 ur = 0 

r                               

=>     u( r ) =  -C  + C'  

rn-2

=>     S(x) =     Blah                       (for some complicated Blah)

rn-1

Why fundamental? Because can build up other solutions from this!

Fun Fact: A solution of -Δ u = f (Poisson's equation) in Rn is

u(x) = S(x) � f(x) =      S(x-y) f(y) dy

II- DERIVATION OF LAPLACE

Two goals: Derive Laplace's equation, and also highlight an 

important structure of Δu = 0

Fundamental solution of Laplace for n = 3

S(x,y,z) =   1     =             

4πr         4π   x2 + y2 + z2

(Basically the constant is chosen such that -ΔS = �0 <- Dirac at 0)



Definition: If F = (F1, …, Fn) is a vector field in Rn, then

div(F) = (F1)x1 + … + (Fn)xn

Notice: If u = u(x1, …, xn), then     u = (ux1, …, uxn)

=> div(    u) = (ux1)x1 + … + (uxn)xn = ux1 x1 + … + uxn xn = Δu

Fact: Δu = div(    u)        "divergence structure"

In particular, Laplace's equation works very well with the 

divergence theorem

Divergence Theorem: F  n dS =     div(F) dx

B) DERIVATION

Suppose you have a fluid F that is in equilibrium

(think F =  temperature or chemical concentration)

Equilibrium means that for any region D, the net flux of F is 0. 

bdy D              D

A) SETTING



That is, for any region D of Rn

F    n   dS   =   0       

Picture: (Think Traffic In = Traffic Out, so on average it's 0)

By the divergence theorem, get

F   n  dS =          div(F) dx = 0     

This holds for any region D, therefore     div(F) = 0 

Now in applications, we have:      F = -c   u 

for some density u and some c > 0

(Interpretation: F is proportional to the rate of change of u, 

but points in the opposite direction since the flow is from 

regions of higher to lower concentration)

(Note: Depending on the context, this is called Fick's law of 

diffusion, Fourier's law of heat conduction, or Ohm's law of 

electrical conduction)

Bdy D



Therefore div(F) = 0 

=>  div(-c   u) = 0  

=>  -c div(    u) = 0

=>    Δu = 0

III- OMG APPLICATION

Saved the best for last :)                           Gain/Loss = g(x*)

bdy D

Suppose you start at x in D and you perform Brownian (= drunken) 

motion until you hit the bdy D, at which point you have a gain/loss 

g(x*)  (think hitting a wall, and g(x*) = price you have to pay for 

damages)

In general, this is a random variable, so

Let   u(x) = Expected (=Average) Gain/Loss starting at x

Note: The SAME proof can be adapted to derive the heat 

equation and even the wave equation!



FACT: u solves        Δu = 0 in D

u = g  on bdy D

INSANE CONSEQUENCE:

Suppose g is zero everywhere, but g(x*) > 0 for some point x* that 

is far, far away (think x* = treasure/jackpot)

Picture:

Then by positivity u > 0 EVERYWHERE

In particular, for all x, no matter how far, there is always a 

positive chance of hitting x*, that is of finding the treasure!

The insane thing is not that there is some way of finding the 

treasure, but that there is a positive probability of finding it (so 

actually MANY ways of finding it)

Note: There is a similar interpretation with the heat equation

Recall: Positivity:  If u solves the above and g ≥ 0 with g ≡ 0

Then u > 0 everywhere



Suppose you start at position x and time t  (here D = R), you 

perform Brownian motion, and at some FIXED time T, I tell you 

"STOP," and I give you a gain/loss g(x*)

Let        u(x,t) = Average gain/loss starting at x and t

Then u solves         ut = uxx in R x (0,T)

u(x,T) = g(x)     on R

(This is called a TERMINAL value problem, as opposed to the 

INITIAL value problems that we're used to)

Note: Positivity here implies that if g(x*) > 0 somewhere, then u > 

0 everywhere, so it will always be possible to reach x* at time T, no 

matter which time t you start at!

R



And with this we're officially done with the material of the course!!!

Congratulations, you made it!!!     


