LECTURE 29: FINAL EXAM REVIEW (III)

Monday, December 2, 2019 7:31 PM

There's a saying in German that says: "Everything has an end, except for a sausage, which has two," and with this I'd like to welcome you to the last lecture of Math 3A, and the third part of our final exam review session.

Today: All about True/False questions!

Note: There's a video on YouTube with 111 True/False questions, in case you need more practice.

(let's do something fun: For each question, I'll say the corresponding number in the world's most popular language)

(a) If A is invertible, then A is diagonalizable

(Mandarin: 1 = Yi)

FALSE

Example: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (prime example of a nondiagonalizable matrix)

Invertible (since det(A) is nonzero), but not diagonalizable (1 is an eigenvalue, but only one eigenvector, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

(b) If A is diagonalizable, then A is invertible

(Spanish: 2 = Dos)

FALSE

Example:
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Diagonalizable (it's diagonal!), but not invertible

(c) If Q is orthogonal, then $(Qx) \cdot (Qy) = x \cdot y$

(English: 3 = Three)

TRUE

$$(Qx) \cdot (Qy) = (Qx)^T (Qy) = x^T Q^T Q y = x^T I y = x^T y = x \cdot y$$

(Interpretation: Orthogonal matrices not only preserve lengths, but angles as well)

(d) \hat{x} is orthogonal to x

(What IS true is that
$$\times -\hat{x}$$
 is orthogonal to \hat{x})
(e) The OP of \times on W^{\perp} is $\times -\hat{x}$
(Hindi: 5 = Panj)
TRUE
In all those problems, a picture helps
 W^{\perp} $\times -\hat{x}$ W
 N^{3} $\times -\hat{x}$ W
(f) If u and v are (nonzero) eigenvectors of A corresponding to $\hat{\lambda}$ and
 γ respectively, with $\hat{\lambda} \neq \gamma$, then $\{u,v\}$ is LI
(Portuguese: 6 = Seis)
TRUE
Suppose $au + bv = 0$ (\star) (show $a = b = 0$)
Know: $Au = \hat{\lambda} u, Av = \gamma v$
1) Apply A to (\star):

A (au + bv) = A0
a Au + b Av = 0
a
$$\lambda u + b p' v = 0$$

2) Hint: Multiply (*) by λ
 $\lambda (au + bv) = \lambda 0$
a $\lambda u + b \lambda v = 0$
3) $a\lambda u + bp' v = 0$
 $a\lambda u + b\lambda v = 0$
Subtract: $a\lambda u + bp' v - a\lambda u - b\lambda v = 0$
 $bp' v - b\lambda v = 0$
 $b(p' - \lambda)v = 0$
 $b (p' - \lambda)v = 0$
 $b = 0 (since v \neq 0)$
Finally, $au + bv = 0 \Rightarrow au + 0v = 0 \Rightarrow au = 0 \Rightarrow a = 0$
So $a = b = 0$
(g) If A is similar to I, then A = I
(Russian: 7 = Siem)
TRUE

Know: $A = PIP^{-1} = PP^{-1} = I$

(h) The matrix $B = PDP^T$ is symmetric (here D is diagonal)

(Japanese: 8 = Hadshee)

TRUE

Show B[⊤] = B

But $B^{T} = (PDP^{T})^{T} = (P^{T})^{T} D^{T} P^{T} = P D^{T} P^{T} = PDP^{T}$ (since D is diagonal) = B

(i) If A is symmetric, and u and v are eigenvectors of A corresponding to λ and ν with $(\lambda \neq \rho)$, then u and v are orthogonal

(German: 9 = Neun)

TRUE

Hint: Consider (Au) • v

On the one hand, (Au) \cdot v = (λ u) \cdot v = λ u \cdot v

On the other hand:

 $(Au) \cdot v = (Au)^{\mathsf{T}}v = u^{\mathsf{T}}A^{\mathsf{T}}v = u^{\mathsf{T}}Av \text{ (since A is symmetric)}$ $= u^{\mathsf{T}} v = v \quad v \quad v$

Hence
$$\lambda u \cdot v = v u \cdot v = \lambda (v - v) u \cdot v = 0 = v u \cdot v = 0$$

$$\neq 0$$

(j) Ax = b always has exactly one least-squares solution (Cantonese: 10 = Tsaa) FALSE Example: x + y = 2 x + y = 4 This has infinitely many L-S solutions, all on the line x + y = 3 (see HW) Picture: x + y = 4x + y = 3 $x + \gamma = 2$ (k) If T: Rⁿ -> Rⁿ is one-to-one, then T is also onto Rⁿ (Javanese: 11 = Sewelas) TRUE T 1-1 => A is invertible (by IMT, since A is nxn) => T is onto Rⁿ (again by IMT) (1) If x is in W and W $\stackrel{\bot}{}$, then x = 0

FALSE

x + y = 2 2x + 2y = 4 3x + 3y = 6

(All we can say: There is some b with Ax = b inconsistent)

(o) Math 3A was 3A-wesome!!!

(Telugu: 15 = Padihenu)

TRUE!!!!

And with this, I'd like to thank you for flying Peyam Airlines, I hope you had a pleasant stay on board, and I wish you a safe onward journey!!!