LECTURE 29: FINAL EXAM REVIEW (III)

There's a saying in German that says: "Everything has an end, except for a sausage, which has two," and with this I'd like to welcome you to the last lecture of Math 3A, and the third part of our final exam review session.

Today: All about True/False questions!

Note: There's a video on YouTube with 111 True/False questions, in case you need more practice.
(let's do something fun: For each question, I'll say the corresponding number in the world's most popular language)
(a) If A is invertible, then A is diagonalizable
(Mandarin: $1=\mathrm{Yi}_{\mathrm{i}}$)
FALSE
Example: $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ (prime example of a nondiagonalizable matrix)
Invertible (since $\operatorname{det}(A)$ is nonzero), but not diagonalizable (1 is an eigenvalue, but only one eigenvector, $\left[\begin{array}{l}1 \\ 0\end{array}\right]$)
(b) If A is diagonalizable, then A is invertible
(Spanish: 2 = Dos)

FALSE
Example: $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Diagonalizable (it's diagonal!), but not invertible
(c) If Q is orthogonal, then $(Q x) \cdot(Q y)=x \cdot y$
(English: 3 = Three)

TRUE
$(Q x) \cdot(Q y)=(Q x)^{\top}(Q y)=x^{\top} Q^{\top} Q y=x^{\top} I y=x^{\top} y=x \cdot y$
(Interpretation: Orthogonal matrices not only preserve lengths, but angles as well)
(d) \hat{x} is orthogonal to x
(Bengali: 4 = Thar)
FALSE

Not perpendicular!
(What IS true is that $x-\hat{x}$ is orthogonal to \hat{x})
(e) The OP of x on W^{\perp} is $x-\hat{x}$
(Hindi: $5=$ Panj)
TRUE

In all those problems, a picture helps

(f) If u and v are (nonzero) eigenvectors of A corresponding to λ and respectively, with $\lambda \neq \mu$, then $\{u, v\}$ is LI
(Portuguese: $6=$ Sis)
TRUE

Suppose $a u+b v=0 \quad(*)$ (show $a=b=0$)
Know: $A u=\lambda u, A v=\rho v$

1) Apply A to (*):

$$
\begin{aligned}
& A(a u+b v)=A 0 \\
& a A u+b A v=0
\end{aligned}
$$

$a \lambda u+b \mu v=0$
2) Hint: Multiply ($*$) by λ

$$
\lambda(a u+b v)=\lambda 0
$$

a $\quad \lambda u+b \quad \lambda v=0$
3) $\quad a \lambda u+b \mu v=0$
$a \boldsymbol{\lambda} u+b \quad \lambda \quad v=0$
Subtract: $a \lambda u+b \mu v-a \lambda u-b \lambda v=0$
$b \mu v-b \lambda v=0$
$b(\underbrace{\rho-\lambda}_{\neq 0}) v=0$
$b v=0$
$b=0($ since $v \neq 0)$
Finally, $a u+b v=0 \Rightarrow a u+0 v=0 \Rightarrow a u=0 \Rightarrow a=0$
So $a=b=0$
(g) If A is similar to I, then $A=I$
(Russian: 7 = Sem)

TRUE

Know: $A=P I P^{-1}=P P^{-1}=I$
(h) The matrix $B=P D P^{\top}$ is symmetric (here D is diagonal)
(Japanese: 8 = Hadshee)

TRUE

Show $B^{\top}=B$

But $B^{\top}=\left(P D P^{\top}\right)^{\top}=\left(P^{\top}\right)^{\top} D^{\top} P^{\top}=P D^{\top} P^{\top}=P D P^{\top}$ (since D is diagonal) $=B$
(i) If A is symmetric and u and v are eigenvectors of A corresponding to λ and r with $\lambda \neq \mu$), then u and v are orthogonal
(German: 9 = Neun)

TRUE

Hint: Consider (Au) vv

On the one hand, $(A u) \cdot v=(\lambda u) \cdot v=\lambda u \cdot v$

On the other hand:
$(A u) \cdot v=(A u)^{\top} v=u^{\top} A^{\top} v=u^{\top} A v$ (since A is symmetric)
$=u^{\top} \rho v=\rho u^{\top} v=\rho u \cdot v$
Hence $\lambda u \cdot v=\rho u \cdot v \Rightarrow(\underset{\sim}{\neq} \underset{0}{\lambda}) u \cdot v=0 \Rightarrow u \cdot v=0$
(j) $A x=b$ always has exactly one least-squares solution
(Cantonese: 10 = Tia)
FALSE

Example:

$\left\{\begin{array}{l}x+y=2 \\ x+y=4\end{array}\right.$
This has infinitely many L-S solutions, all on the line $x+y=3$ (see HW)
Picture:

(k) If $T: R^{n} \rightarrow R^{n}$ is one-to-one, then T is also onto R^{n}
(Javanese: 11 = Sewelas)

TRUE

T 1-1 $\Rightarrow A$ is invertible (by IMT, since A is $n \times n$)
$\Rightarrow T$ is onto R^{n} (again by IMT)
(I) If x is in W and W^{\perp}, then $x=0$
(Korean: $12=12$ Yeld)

Since x is in $W^{\perp}, x \cdot w=0$ for all w in W
Let $w=x($ which is in $W)$, then
$x \cdot X=0$
$\Rightarrow x=0$
(m) Any system of 2 equations in 3 unknowns must has infinitely many solutions
(French: 13 = Treize)
FALSE
$\left\{\begin{array}{l}x+y-z=2 \\ x+y-z=3\end{array}\right.$
(All we can say is: $A x=0$ must have infinitely many solutions)
(n) Any system of 3 equations in 2 unknowns must be inconsistent
(Vietnamese: 14 = Muy Bohr)
FALSE

$$
\left\{\begin{array}{l}
x+y=2 \\
2 x+2 y=4 \\
3 x+3 y=6
\end{array}\right.
$$

(All we can say: There is some b with $A x=b$ inconsistent)
(o) Math 3A was 3A-wesome!!!
(Telugu: 15 = Padihenu)

TRUE!!!!

And with this, I'd like to thank you for flying Peyam Airlines, I hope you had a pleasant stay on board, and I wish you a safe onward journey!!!

