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1. (5 points, 1 point each) Label each statement as TRUE or FALSE.
In this question, you do NOT have to justify your answer. Each cor-
rect answer will get 1 point and each incorrect or illegible answer
will get 0 points.

(a) The function T : Rn → R defined by T (u) = ‖u‖ is a linear
transformation.

(b) If {u, v, w} is linearly dependent, then so is {u, v}

(c) Any orthonormal set is linearly independent

(d) If A is square and A2 is invertible, then A is invertible

(e) If u and v are (nonzero) eigenvectors of A, then u + v is also
an eigenvector of A
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2. (20 points) Find a diagonal matrix D and an invertible matrix P
such that A = PDP−1, where

A =

 7 4 16
2 5 8
−2 −2 −5


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3. (5 points, 1 point each) For the matrix A below, find the following.
Justify your answer.

(a) dim(Nul(A))
(b) Rank(A)
(c) A basis for Col(A)
(d) State the Rank Theorem
(e) A basis for (Nul(AT ))⊥

A =

 1 −4 9 −7
−1 2 −4 1
5 −6 10 7

 ∼ B =

1 0 −1 5
0 −2 5 −6
0 0 0 0


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4. (10 points) Find the equation of the line y = ax+ b that best fits the
points (−1, 0), (0, 1), (1, 2), (2, 5) in a least-squares sense.
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5. (5 points, 1 point each) Write ALWAYS if A is always diagonaliz-
able, SOMETIMES if A might or might not be diagonalizable, and
NEVER if A is never diagonalizable. Here A is a 3× 3 matrix, and
you do not have to justify your answer.

(a) A is invertible

(b) A only has eigenvalue λ = 2

(c) A has eigenvalues λ = 2, 0,−4

(d) A has eigenvalues λ = 1, 2 and dim(E1) = 2, dim(E2) = 1

(e) A has eigenvalues λ = 3, 4 and dim(E3) = 1, dim(E4) = 1.
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6. (20 points, 5 points each) Label each statement as TRUE or FALSE.
In this question, you HAVE to justify your answer.

(a) If Q is orthogonal, then ‖Qx‖ = ‖x‖ for all x

(b) If A is invertible and v is a nonzero eigenvector of A, then v is
also an eigenvector of A−1
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(c) Definition: A is positive-definite if xTAx > 0 for any x 6= 0

If A is positive definite, then any eigenvalue of A (if it exists)
must be positive.

(d) For any vectors u and v in Rn, we have

|u · v| ≤ ‖u‖ ‖v‖

Hint: Calculate the orthogonal projection v̂ of v on Span{u}
and compare ‖v̂‖ and ‖v‖. A picture helps.
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7. (10 points) The awesome thing is that everything that we’ve been
doing works not only for vectors in Rn, but also for functions!

Definition: If f and g are functions, then

f · g =
∫ 1

−1
f(x)g(x)dx

Use the Gram-Schmidt process to find an orthogonal basis of

W = Span
{
1, x, x2

}
Hint: Just use the usual Gram-Schmidt process with u1 = 1, u2 = x
and u3 = x2 and the dot product above!
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8. (10 points) Calculate

tan−1
([
−1 2
−1 2

])
Hint: This is the same thing that we’ve been doing in lecture for An

and
√
A, except here you apply tan−1 to all the diagonal entries of

D. Also see footnote below1

1Here are some useful (and useless) values of arctan: tan−1(0) = 0, tan−1 (±1) =

±π
4 , tan

−1(±∞) = ±π
2 , tan

−1( 1√
3
) = π

6 , tan
−1(
√
3) = π

3
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9. (15 = 8 + 7 points)

(a) Calculate the determinant of the following Vandermonde ma-
trix. Write your answer in factored form. Here x, y, z, t are
numbers. ∣∣∣∣∣∣∣∣

1 x x2 x3

1 y y2 y3

1 z z2 z3

1 t t2 t3

∣∣∣∣∣∣∣∣
Hint: a3 − b3 = (a− b)(a2 + ab+ b2)
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(b) Let x1, x2, x3, x4 be distinct numbers and y1, y2, y3, y4 be any
numbers. Use your result in (a) to show that there exists a
unique cubic polynomial P (x) = a+ bx+ cx2+dx3 (for some
a, b, c, d) that goes through the points (x1, y1), (x2, y2), (x3, y3),
(x4, y4).


