## MATH 54, mock final test.

All the necessary work to justify an answer and all the necessary steps of a proof must be shown clearly to obtain full credit. Partial credit **may** be given but only for significant progress towards a solution. Show all relevant work in logical sequence and indicate all answers clearly. Cross out all work you do not wish considered. 2 pages of notes are allowed. Books and electronic devices are not allowed during the test.

1. Determine for which values of  $b_1$ ,  $b_2$ ,  $b_3$  the system

$$2x_1 - 4x_2 - 2x_3 = b_1$$
  

$$-5x_1 + x_2 + x_3 = b_2$$
  

$$7x_1 - 5x_2 - 3x_3 = b_3$$

has a solution.

2. Let  $T: \mathbb{P}_2 \to \mathbb{R}^3$  be the linear map taking a polynomial of degree at most 2 to its values at the points -1, 0 and 1:

$$T(p) := \left[ \begin{array}{c} p(-1) \\ p(0) \\ p(1) \end{array} \right].$$

- (a) Write the matrix of T in the standard bases.
- (b) Using the result of (a), find a polynomial  $f \in \mathbb{P}_2$  such that f(-1) = 1, f(0) = 0, f(1) = 2.
- 3. Let S be the vector space of functions of the form

$$S := \{p(x)e^{2x} : p \in \mathbb{P}_2\}$$

and L be the differential operator  $L := (D-2I)^2 = (D-2I)(D-2I)$  where I is the identity map and  $D = \frac{d}{dx}$  is the operator of differentiation. Is there a basis for S consisting of eigenvectors of L?

4. Using variation of parameters, find a particular solution to the equation

$$y'' + y = \sec t.$$

5. Find a general solution to the equation

$$y^{(4)} + 4y = x^5 + 2x^4 - x^3 + 1.$$

6. Do the functions  $\{e^{3x}, e^{-x}, e^{-4x}\}$  form a fundamental solution set for the differential equation

$$y''' + 2y'' - 11y' - 12y = 0?$$

7. Consider the following system of second order differential equations in two functions y = y(t) and z = z(t):

$$y'' + 16z = 0$$
$$z'' - y = 0$$

- (a) Convert the system to a system of *first order* differential equations in four functions  $x_1, x_2, x_3$ , and  $x_4$ .
- (b) Use part (a) to produce four linearly independent solutions to the original system.
- 8. Compute the Fourier series of  $e^x$  on the interval  $[-\pi, \pi]$ .
- 9. (a) Determine all solutions of the form u(x,t) = X(x)T(t) to the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} , \qquad 0 < x < \pi, \quad t > 0,$$

that satisfy the boundary conditions

$$u(0,t) = 0,$$
  $u(\pi,t) + \frac{\partial u}{\partial x}(\pi,t) = 0,$   $t > 0.$ 

(b) Describe how to obtain, given a function f(x), a solution to the boundary value problem (a) that also satisfies the initial condition

$$u(x,0) = f(x), \qquad 0 < x < \pi.$$