FINAL EXAM (RIBET)

PEYAM RYAN TABRIZIAN

(1) TRUE/FALSE

- (a) If A is a square invertible matrix, then A and A^{-1} have the same rank
- (b) If A is an $m \times n$ matrix and if b is in \mathbf{R}^m , there is a unique $x \in \mathbb{R}^n$ for which $||A\mathbf{x} \mathbf{b}||$ is smallest.
- (c) If A is an $n \times n$ matrix, and if ${\bf v}$ and ${\bf w}$ satisfy $A{\bf v}=2{\bf v},$ $A{\bf w}=3{\bf w},$ the ${\bf v}\times{\bf w}=0$
- (d) If the dimensions of the null spaces of a matrix and its transpose are equal, then the matrix is qsquare
- (e) If A is a 2×2 matrix, then -1 cannot be an eigenvalue of A^2 .
- (f) I likes the linear algebra portion of this course more than the differential equations portion
- (g) If 4 linearly independent vectors lie in $Span \{ \mathbf{w_1}, \dots, \mathbf{w_n} \}$, then n must be at least 4.
- (h) If B is invertible, then the column spaces of A and AB are equal.
- (i) If A is a matrix, then the row spaces of A and A^TA are equal
- (j) If 2 symmetric $n\times n$ matrices A and B have the same eigenvalues, then A=B
- (k) If the characteristic polynomial of A is $p(\lambda)=(\lambda-1)(\lambda+1)(\lambda-3)^2$, then A has to be diagonalizable

Date: Wednesday, December 7th, 2011.

1

2

(2) Consider the following vectors:

$$\mathbf{v_1} = \begin{bmatrix} 0\\1\\0\\1\\0 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 0\\1\\0\\1\\1 \end{bmatrix}$$

Find w_1, w_2, w_3 such that $\{w_1, w_2, w_3\}$ is an orthogonal basis for $Span\{v_1, v_2, v_3\}$.

(3) Solve the following system of differential equations:

$$\begin{cases} x_1'(t)=-2x_1(t)+2x_2(t)\\ x_2'(t)=&2x_1(t)+x_2(t)\\ \end{cases}$$
 and $x_1(0)=-1,x_2(0)=3.$

(4) Find bases for Nul(A), Row(A), Col(A), where:

$$A = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 3 & 1 & 1 & 0 \\ 4 & 2 & 4 & 2 \end{bmatrix}$$

(5) Find the first 4 terms A_0, A_1, A_2, A_3 of the Fourier cosine series of $f(x) = |\sin(x)|$

Hint:
$$\sin(A)\cos(B) = \frac{1}{2}[\sin(A+B) + \sin(A-B)]$$

(6) Solve the following PDE:

$$\begin{cases} \frac{\partial u}{\partial t} = 25 \frac{\partial^2 u}{\partial x^2} & 0 < x < \pi, \quad t > 0 \\ u(0,t) = u(\pi,t) = 0 & t > 0 \\ u(x,0) = \sin(3x) - \sin(4x) & 0 < x < \pi \end{cases}$$

(7) Suppose $\mathbf{v_1}, \dots, \mathbf{v_n}$ are vectors in \mathbb{R}^n and that A is an $n \times n$ matrix. If $A\mathbf{v_1}, \dots, A\mathbf{v_n}$ form a basis for \mathbb{R}^n , show that $\mathbf{v_1}, \dots \mathbf{v_n}$ form a basis of \mathbb{R}^n and that A is invertible.

(8) Let
$$\mathbf{v_1} = \begin{bmatrix} 0 \\ 5 \\ -2 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 9 \\ 8 \\ 7 \end{bmatrix}$

Suppose A is the 3×3 matrix for which $A\mathbf{v_1} = \mathbf{v_1}$, $A\mathbf{v_2} = \mathbf{0}$, $A\mathbf{v_3} = 5\mathbf{v_3}$. Find an invertible matrix P and a diagonalizable matrix D such that $A = PDP^{-1}$.