FINAL EXAM (RIBET)

PEYAM RYAN TABRIZIAN

(1) TRUE/FALSE

(a) If A is a square invertible matrix, then A and A^{-1} have the same rank
(b) If A is an $m \times n$ matrix and if b is in \mathbf{R}^{m}, there is a unique $x \in \mathbb{R}^{n}$ for which $\|A \mathbf{x}-\mathbf{b}\|$ is smallest.
(c) If A is an $n \times n$ matrix, and if \mathbf{v} and \mathbf{w} satisfy $A \mathbf{v}=2 \mathbf{v}, A \mathbf{w}=3 \mathbf{w}$, the $\mathbf{v} \times \mathbf{w}=0$
(d) If the dimensions of the null spaces of a matrix and its transpose are equal, then the matrix is qsquare
(e) If A is a 2×2 matrix, then -1 cannot be an eigenvalue of A^{2}.
(f) I likes the linear algebra portion of this course more than the differential equations portion
(g) If 4 linearly independent vectors lie in $\operatorname{Span}\left\{\mathbf{w}_{\mathbf{1}}, \cdots, \mathbf{w}_{\mathbf{n}}\right\}$, then n must be at least 4.
(h) If B is invertible, then the column spaces of A and $A B$ are equal.
(i) If A is a matrix, then the row spaces of A and $A^{T} A$ are equal
(j) If 2 symmetric $n \times n$ matrices A and B have the same eigenvalues, then $A=B$
(k) If the characteristic polynomial of A is $p(\lambda)=(\lambda-1)(\lambda+1)(\lambda-3)^{2}$, then A has to be diagonalizable

[^0](2) Consider the following vectors:
\[

\mathbf{v}_{\mathbf{1}}=\left[$$
\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}
$$\right], \mathbf{v}_{\mathbf{2}}=\left[$$
\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0
\end{array}
$$\right], \mathbf{v}_{\mathbf{3}}=\left[$$
\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}
$$\right]
\]

Find $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}$ such that $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is an orthogonal basis for $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$.
(3) Solve the following system of differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-2 x_{1}(t)+2 x_{2}(t) \\
x_{2}^{\prime}(t)=2 x_{1}(t)+x_{2}(t)
\end{array}\right.
$$

and $x_{1}(0)=-1, x_{2}(0)=3$.
(4) Find bases for $\operatorname{Nul}(A), \operatorname{Row}(A), \operatorname{Col}(A)$, where:

$$
A=\left[\begin{array}{llll}
1 & 1 & 3 & 2 \\
3 & 1 & 1 & 0 \\
4 & 2 & 4 & 2
\end{array}\right]
$$

(5) Find the first 4 terms $A_{0}, A_{1}, A_{2}, A_{3}$ of the Fourier cosine series of $f(x)=$ $|\sin (x)|$

$$
\text { Hint: } \sin (A) \cos (B)=\frac{1}{2}[\sin (A+B)+\sin (A-B)]
$$

(6) Solve the following PDE:

$$
\left\{\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =25 \frac{\partial^{2} u}{\partial x^{2}} & 0<x<\pi, & t>0 \\
u(0, t) & =u(\pi, t)=0 & t>0 \\
u(x, 0) & =\sin (3 x)-\sin (4 x) & 0<x<\pi
\end{array}\right.
$$

(7) Suppose $\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}$ are vectors in \mathbb{R}^{n} and that A is an $n \times n$ matrix. If $A \mathbf{v}_{\mathbf{1}}, \cdots, A \mathbf{v}_{\mathbf{n}}$ form a basis for \mathbb{R}^{n}, show that $\mathbf{v}_{\mathbf{1}}, \cdots \mathbf{v}_{\mathbf{n}}$ form a basis of \mathbb{R}^{n} and that A is invertible.
(8) Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}0 \\ 5 \\ -2\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}9 \\ 8 \\ 7\end{array}\right]$

Suppose A is the 3×3 matrix for which $A \mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}}, A \mathbf{v}_{\mathbf{2}}=\mathbf{0}, A \mathbf{v}_{\mathbf{3}}=5 \mathbf{v}_{\mathbf{3}}$. Find an invertible matrix P and a diagonalizable matrix D such that $A=P D P^{-1}$.

[^0]: Date: Wednesday, December 7th, 2011.

