Math 54. Solutions to Sample Final Exam

1. (12 points) Find the inverse of the matrix $A=\left[\begin{array}{ccc}7 & 10 & -9 \\ 1 & 2 & -3 \\ -1 & 1 & -6\end{array}\right]$, if it exists. Use the algorithm from the book (or from class).

The algorithm consists of row-reducing the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$:

$$
\begin{aligned}
{\left[\begin{array}{cccccc}
7 & 10 & -9 & 1 & 0 & 0 \\
1 & 2 & -3 & 0 & 1 & 0 \\
-1 & 1 & -6 & 0 & 0 & 1
\end{array}\right] } & \sim\left[\begin{array}{cccccc}
1 & 2 & -3 & 0 & 1 & 0 \\
7 & 10 & -9 & 1 & 0 & 0 \\
-1 & 1 & -6 & 0 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 2 & -3 & 0 & 1 & 0 \\
0 & -4 & 12 & 1 & -7 & 0 \\
0 & 3 & -9 & 0 & 1 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 2 & -3 & 0 & 1 & 0 \\
0 & 1 & -3 & -\frac{1}{4} & \frac{7}{4} & 0 \\
0 & 3 & -9 & 0 & 1 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 2 & -3 & 0 & 1 & 0 \\
0 & 1 & -3 & -\frac{1}{4} & \frac{7}{4} & 0 \\
0 & 0 & 0 & \frac{3}{4} & -\frac{17}{4} & 1
\end{array}\right]
\end{aligned}
$$

The matrix is singular, because the first three entries of the bottom row are zero.
2. (20 points) Let A be the 2×2 matrix $\left[\begin{array}{ll}0 & 1 \\ x & 0\end{array}\right]$, where x is a real number.
(a). For which values of x is A similar to a (real) diagonal matrix? (Do not diagonalize the matrix.)

The characteristic polynomial of the matrix is

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-\lambda & 1 \\
x & -\lambda
\end{array}\right|=\lambda^{2}-x .
$$

If $x>0$ then A has two distinct real eigenvalues $\pm \sqrt{x}$, so it is diagonalizable. If $x<0$ then A has (non-real) complex eigenvalues $\pm i \sqrt{-x}$, so it is not diagonalizable. If $x=0$ then A has a double eigenvalue $\lambda=0$, for which the eigenspace is

$$
\operatorname{Nul} A=\operatorname{Nul}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} .
$$

This matrix has only one linearly independent eigenvector, so it is not diagonalizable.
Therefore, A is similar to a (real) diagonal matrix if and only if $x>0$.
(b). For which values of x is A orthogonally diagonalizable?

The real matrix A is orthogonally diagonalizable if and only if it is symmetric, so it is orthogonally diagonalizable if and only if $x=1$.
3. (20 points) Each of the following parts gives vector spaces V and W, bases \mathcal{B} for V and \mathcal{C} for W, and a linear transformation $T: V \rightarrow W$. In each case find the matrix for T relative to \mathcal{B} and \mathcal{C}.
(a). $V=W=\mathbb{R}^{2}, \mathcal{B}=\{(1,1),(-1,1)\}, \mathcal{C}=\{(1,0),(0,1)\}$, and T is counterclockwise rotation by 90 degrees.

For solutions, write vectors in horizontal notation, and write $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$.
We have

$$
M=\left[\begin{array}{ll}
T\left(\vec{b}_{1}\right)_{\mathcal{C}} & T\left(\vec{b}_{2}\right)_{\mathcal{C}}
\end{array}\right]=\left[\begin{array}{ll}
(-1,1)_{\mathcal{C}} & (-1,-1)_{\mathcal{C}}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right]
$$

(b). $V=W=\operatorname{Span}\{\sin x, \cos x\} \subseteq C[0,2 \pi], \mathcal{B}=\mathcal{C}=\{\sin x, \cos x\}$, and T is the linear transformation taking a function to its derivative.

$$
M=\left[\begin{array}{ll}
T(\sin x)_{\mathcal{C}} & T(\cos x)_{\mathcal{C}}
\end{array}\right]=\left[\begin{array}{ll}
(\cos x)_{\mathcal{C}} & (-\sin x)_{\mathcal{C}}
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(c). $V=\mathbb{R}^{3}, W=\operatorname{Span}\{(1,2,3)\} \subseteq \mathbb{R}^{3}, \mathcal{B}$ is the standard basis of \mathbb{R}^{3}, $\mathcal{C}=\{(1,2,3)\}$, and T is the projection of a vector in \mathbb{R}^{3} to the line through $(1,2,3)$.

Let $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Then

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\operatorname{proj}_{\vec{v}}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{1}{14} \vec{v}=\left[\begin{array}{l}
1 / 14 \\
2 / 14 \\
3 / 14
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\operatorname{proj}_{\vec{v}}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{2}{14} \vec{v}=\left[\begin{array}{l}
1 / 7 \\
2 / 7 \\
3 / 7
\end{array}\right]
\end{aligned}
$$

and

$$
T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\operatorname{proj}_{\vec{v}}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\frac{3}{14} \vec{v}=\left[\begin{array}{c}
3 / 14 \\
6 / 14 \\
9 / 14
\end{array}\right]
$$

Therefore

$$
M=\left[T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)_{\mathcal{C}} T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)_{\mathcal{C}} T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)_{\mathcal{C}}\right]=\left[\begin{array}{lll}
\frac{1}{14} & \frac{2}{14} & \frac{3}{14}
\end{array}\right] .
$$

4. (25 points) Let A be the 4×3 matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -2 & 5 & 5 \\ 0 & 2 & 1 \\ 2 & -4 & 0\end{array}\right]$.

Write $A=Q R$, where Q is a matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an upper triangular invertible matrix with positive entries on its main diagonal.

First use the Gram-Schmidt process to find Q :

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
0 \\
2
\end{array}\right] \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}=\left[\begin{array}{c}
0 \\
5 \\
2 \\
-4
\end{array}\right]-\frac{-18}{9}\left[\begin{array}{c}
1 \\
-2 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2 \\
0
\end{array}\right] \\
& \vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}=\left[\begin{array}{l}
1 \\
5 \\
1 \\
0
\end{array}\right]-\frac{-9}{9}\left[\begin{array}{c}
1 \\
-2 \\
0 \\
2
\end{array}\right]-\frac{9}{9}\left[\begin{array}{l}
2 \\
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
-1 \\
2
\end{array}\right] .
\end{aligned}
$$

After normalizing each of these vectors, we have

$$
Q=\left[\begin{array}{ccc}
1 / 3 & 2 / 3 & 0 \\
-2 / 3 & 1 / 3 & 2 / 3 \\
0 & 2 / 3 & -1 / 3 \\
2 / 3 & 0 & 2 / 3
\end{array}\right]
$$

Finally, as in Example 4 on pages 303-304,

$$
\begin{aligned}
R= & Q^{T} A=\frac{1}{3}\left[\begin{array}{cccc}
1 & -2 & 0 & 2 \\
2 & 1 & 2 & 0 \\
0 & 2 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & 5 & 5 \\
0 & 2 & 1 \\
2 & -4 & 0
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ccc}
9 & -18 & -9 \\
0 & 9 & 9 \\
0 & 0 & 9
\end{array}\right]=\left[\begin{array}{ccc}
3 & -6 & -3 \\
0 & 3 & 3 \\
0 & 0 & 3
\end{array}\right] .
\end{aligned}
$$

5. (20 points) The linear system

$$
\begin{aligned}
x_{1}+x_{2}+3 x_{3} & =11 \\
-x_{1}+x_{2}+x_{3} & =11 \\
x_{1}-x_{2}-x_{3} & =0 \\
x_{2}+2 x_{3} & =11
\end{aligned}
$$

is inconsistent. Find the normal equations that determine a least squares solution to this system. (Do not solve them.)

This linear system can be written as $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
-1 & 1 & 1 \\
1 & -1 & -1 \\
0 & 1 & 2
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{c}
11 \\
11 \\
0 \\
11
\end{array}\right]
$$

The normal equations are $A^{T} A \vec{x}=A^{T} \vec{b}$. We have

$$
A^{T} A=\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
1 & 1 & -1 & 1 \\
3 & 1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 3 \\
-1 & 1 & 1 \\
1 & -1 & -1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 4 & 7 \\
1 & 7 & 15
\end{array}\right]
$$

and

$$
A^{T} \vec{b}=\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
1 & 1 & -1 & 1 \\
3 & 1 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
11 \\
11 \\
0 \\
11
\end{array}\right]=\left[\begin{array}{c}
0 \\
33 \\
66
\end{array}\right]
$$

Therefore the normal equations are

$$
\begin{aligned}
3 x_{1}-x_{2}+x_{3} & =0 \\
-x_{1}+4 x_{2}+7 x_{3} & =33 \\
x_{1}+7 x_{2}+15 x_{3} & =66
\end{aligned}
$$

6. (25 points) Find a general solution to the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=4 e^{t}+3 t
$$

The characteristic polynomial is $r^{2}-2 r+1=(r-1)^{2}$. A general solution to the associated homogeneous problem is $c_{1} e^{t}+c_{2} t e^{t}$. Using the Method of Undetermined Coefficients to find a particular solution y_{p} involves a trial solution of the form

$$
y_{p}=A t^{2} e^{t}+B t+C
$$

One has

$$
\begin{aligned}
y_{p}^{\prime} & =2 A t e^{t}+A t^{2} e^{t}+B \\
y_{p}^{\prime \prime} & =2 A e^{t}+4 A t e^{t}+A t^{2} e^{t}
\end{aligned}
$$

Plugging this into the left-hand side of the differential equation gives

$$
\begin{aligned}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p} & =2 A e^{t}+4 A t e^{t}+A t^{2} e^{t}-4 A t e^{t}-2 A t^{2} e^{5}-2 B+A t^{2} e^{t}+B t+C \\
& =2 A e^{t}+B t+(C-2 B)
\end{aligned}
$$

Setting this equal to $4 e^{t}+3 t$ and equating coefficients gives $2 A=4, B=3$, and $C-2 B=0$; therefore $A=2, B=3$, and $C=6$. This gives $y_{p}=2 t^{2} e^{t}+3 t+6$, so a general solution to the nonhomogeneous problem is

$$
y=2 t^{2} e^{t}+3 t+6+c_{1} e^{t}+c_{2} t e^{t} .
$$

7. (16 points) Express the system

$$
\begin{aligned}
x^{\prime \prime}+3 x^{\prime}+2 x+7 y & =e^{t} \\
y^{\prime}+x^{\prime}+x-y & =\cos t \\
x(0)=3, x^{\prime}(0)=5, y(0) & =-1
\end{aligned}
$$

as a matrix system in the form $\vec{x}^{\prime}=A \vec{x}+\vec{f}, \vec{x}(0)=\vec{x}_{0}$. (Do not solve the system.)
With the assignments in the left-hand column and the derivatives in the right:

$$
\begin{aligned}
x_{1}=x & x_{1}^{\prime}=x^{\prime}=x_{2} \\
x_{2}=x^{\prime} & x_{2}^{\prime}=x^{\prime \prime}=e^{t}-3 x^{\prime}-2 x-7 y=e^{t}-3 x_{2}-2 x_{1}-7 x_{3} \\
x_{3}=y & x_{3}^{\prime}=y^{\prime}=\cos t-x^{\prime}-x+y=\cos t-x_{2}-x_{1}+x+3,
\end{aligned}
$$

we have

$$
\vec{x}^{\prime}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-2 & -3 & -7 \\
-1 & -1 & 1
\end{array}\right] \vec{x}+\left[\begin{array}{c}
0 \\
e^{t} \\
\cos t
\end{array}\right] .
$$

8. (30 points) (a). Find a fundamental solution set for the matrix system $\vec{x}^{\prime}=\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right] \vec{x}$.

The characteristic polynomial of the matrix $\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]$ is

$$
\left|\begin{array}{cc}
2-\lambda & -1 \\
1 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}+1=\lambda^{2}-4 \lambda+5,
$$

which has roots $2 \pm i$. The eigenspace for $2+i$ is

$$
\operatorname{Nul}\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}
i \\
1
\end{array}\right]\right\}
$$

so an eigenvector is $\left[\begin{array}{l}0 \\ 1\end{array}\right]+i\left[\begin{array}{l}1 \\ 0\end{array}\right]$. By the box on page 540 , a fundamental solution set is therefore

$$
e^{2 t}(\cos t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]-e^{2 t}(\sin t)\left[\begin{array}{l}
1 \\
0
\end{array}\right], e^{2 t}(\sin t)\left[\begin{array}{l}
0 \\
1
\end{array}\right]+e^{2 t}(\cos t)\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

(b). Compute the Wronskian associated to this solution set.

$$
\left|\begin{array}{cc}
-e^{2 t} \sin t & e^{2 t} \cos t \\
e^{2 t} \cos t & e^{2 t} \sin t
\end{array}\right|=e^{4 t}\left|\begin{array}{cc}
-\sin t & \cos t \\
\cos t & \sin t
\end{array}\right|=e^{4 t}\left(-\sin ^{2} t-\cos ^{2} t\right)=-e^{4 t}
$$

9. (25 points) (a). Compute the Fourier cosine series for the function $f(x)=e^{x}$, $0<x<1$.

We have

$$
a_{0}=2 \int_{0}^{1} e^{x} d x=\left.2 e^{x}\right|_{0} ^{1}=2 e-2
$$

and, for $n>0$,

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1} e^{x} \cos n \pi x d x \\
& =\left.\frac{2 e^{x}(\cos n \pi x+n \pi \sin n \pi x)}{n^{2} \pi^{2}+1}\right|_{0} ^{1} \\
& =\frac{2(e \cos n \pi-1)}{n^{2} \pi^{2}+1} \\
& =\frac{2\left((-1)^{n} e-1\right)}{n^{2} \pi^{2}+1} .
\end{aligned}
$$

Therefore

$$
f(x) \sim(e-1)+2 \sum_{n=1}^{\infty} \frac{(-1)^{n} e-1}{n^{2} \pi^{2}+1} \cos n \pi x .
$$

(b). Determine the function that this series converges to, on the interval $[-1,1]$.

It converges to $e^{|x|}$.
10. (32 points) Find a formal solution to the vibrating-string problem governed by the initial-value problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0, & t>0 ; \\
u(x, 0)=x, & 0<x<\pi \\
\frac{\partial u}{\partial t}(x, 0)=\sin 3 x+\sin 6 x, & 0<x<\pi
\end{aligned}
$$

You may use memorized formulas about the wave equation for this problem (i.e., you do not have to re-derive the solution).

From the above equations, we have $\alpha=3$ and $L=\pi$. As in Example 2 on pages 576-577,

$$
\frac{\partial u}{\partial t}(x, 0)=\sin 3 x+\sin 6 x=\sum_{n=1}^{\infty} n 3 b_{n} \sin n x
$$

so

$$
b_{3}=\frac{1}{9} \quad \text { and } \quad b_{6}=\frac{1}{18}
$$

All other b_{n} are zero.
The values of a_{n} can be determined from the Fourier sine series for $f(x)=x$ given at the beginning of the exam booklet:

$$
a_{n}=\frac{2(-1)^{n+1}}{n}, \quad n=1,2,3, \ldots
$$

Therefore,

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \cos 3 n t \sin n x+\frac{1}{9} \sin 9 t \sin 3 x+\frac{1}{18} \sin 18 t \sin 6 x
$$

