Math 54. Solutions to Sample Final Exam

1. (12 points) Find the inverse of the matrix $A = \begin{bmatrix} 7 & 10 & -9 \\ 1 & 2 & -3 \\ -1 & 1 & -6 \end{bmatrix}$, if it exists. Use the algorithm from the book (or from class).

The algorithm consists of row-reducing the matrix $[A \ I]$:

$$\begin{bmatrix} 7 & 10 & -9 & 1 & 0 & 0 \\ 1 & 2 & -3 & 0 & 1 & 0 \\ -1 & 1 & -6 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 & 1 & 0 \\ 7 & 10 & -9 & 1 & 0 & 0 \\ -1 & 1 & -6 & 0 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -3 & 0 & 1 & 0 \\ 0 & -4 & 12 & 1 & -7 & 0 \\ 0 & 3 & -9 & 0 & 1 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -3 & 0 & 1 & 0 \\ 0 & 1 & -3 & -\frac{1}{4} & \frac{7}{4} & 0 \\ 0 & 3 & -9 & 0 & 1 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -3 & 0 & 1 & 0 \\ 0 & 1 & -3 & -\frac{1}{4} & \frac{7}{4} & 0 \\ 0 & 0 & 0 & \frac{3}{4} & -\frac{17}{4} & 1 \end{bmatrix}$$

The matrix is singular, because the first three entries of the bottom row are zero.

- 2. (20 points) Let A be the 2×2 matrix $\begin{bmatrix} 0 & 1 \\ x & 0 \end{bmatrix}$, where x is a real number.
 - (a). For which values of x is A similar to a (real) diagonal matrix? (Do not diagonalize the matrix.)

The characteristic polynomial of the matrix is

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 \\ x & -\lambda \end{vmatrix} = \lambda^2 - x .$$

If x > 0 then A has two distinct real eigenvalues $\pm \sqrt{x}$, so it is diagonalizable. If x < 0 then A has (non-real) complex eigenvalues $\pm i\sqrt{-x}$, so it is not diagonalizable. If x = 0 then A has a double eigenvalue $\lambda = 0$, for which the eigenspace is

$$\operatorname{Nul} A = \operatorname{Nul} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} .$$

This matrix has only one linearly independent eigenvector, so it is not diagonalizable. Therefore, A is similar to a (real) diagonal matrix if and only if x > 0.

(b). For which values of x is A orthogonally diagonalizable?

The real matrix A is orthogonally diagonalizable if and only if it is symmetric, so it is orthogonally diagonalizable if and only if x = 1.

- 3. (20 points) Each of the following parts gives vector spaces V and W, bases \mathcal{B} for V and \mathcal{C} for W, and a linear transformation $T:V\to W$. In each case find the matrix for T relative to \mathcal{B} and \mathcal{C} .
 - (a). $V=W=\mathbb{R}^2$, $\mathcal{B}=\{(1,1),(-1,1)\}$, $\mathcal{C}=\{(1,0),(0,1)\}$, and T is counterclockwise rotation by 90 degrees.

For solutions, write vectors in horizontal notation, and write $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$. We have

$$M = \begin{bmatrix} T(\vec{b}_1)_{\mathcal{C}} & T(\vec{b}_2)_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} (-1,1)_{\mathcal{C}} & (-1,-1)_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}.$$

(b). $V = W = \text{Span}\{\sin x, \cos x\} \subseteq C[0, 2\pi], \ \mathcal{B} = \mathcal{C} = \{\sin x, \cos x\}, \text{ and } T \text{ is the linear transformation taking a function to its derivative.}$

$$M = [T(\sin x)_{\mathcal{C}} \quad T(\cos x)_{\mathcal{C}}] = [(\cos x)_{\mathcal{C}} \quad (-\sin x)_{\mathcal{C}}] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

(c). $V=\mathbb{R}^3$, $W=\mathrm{Span}\{(1,2,3)\}\subseteq\mathbb{R}^3$, \mathcal{B} is the standard basis of \mathbb{R}^3 , $\mathcal{C}=\{(1,2,3)\}$, and T is the projection of a vector in \mathbb{R}^3 to the line through (1,2,3).

Let
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. Then

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right)=\operatorname{proj}_{\vec{v}}\begin{bmatrix}1\\0\\0\end{bmatrix}=\frac{1}{14}\vec{v}=\begin{bmatrix}1/14\\2/14\\3/14\end{bmatrix}\;,$$

$$T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \operatorname{proj}_{\vec{v}}\begin{bmatrix}0\\1\\0\end{bmatrix} = \frac{2}{14}\vec{v} = \begin{bmatrix}1/7\\2/7\\3/7\end{bmatrix},$$

and

$$T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \operatorname{proj}_{\vec{v}}\begin{bmatrix}0\\0\\1\end{bmatrix} = \frac{3}{14}\vec{v} = \begin{bmatrix}3/14\\6/14\\9/14\end{bmatrix}.$$

Therefore

$$M = \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix}_{C} \quad T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}_{C} \quad T \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}_{C} = \begin{bmatrix} \frac{1}{14} & \frac{2}{14} & \frac{3}{14} \end{bmatrix}.$$

4. (25 points) Let A be the 4×3 matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 5 & 5 \\ 0 & 2 & 1 \\ 2 & -4 & 0 \end{bmatrix}$.

Write A=QR, where Q is a matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an upper triangular invertible matrix with positive entries on its main diagonal.

First use the Gram-Schmidt process to find Q:

$$\vec{v}_1 = \vec{x}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 2 \end{bmatrix}$$

$$\vec{v}_2 = \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \begin{bmatrix} 0 \\ 5 \\ 2 \\ -4 \end{bmatrix} - \frac{-18}{9} \begin{bmatrix} 1 \\ -2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \end{bmatrix}$$

$$\vec{v}_3 = \vec{x}_3 - \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 = \begin{bmatrix} 1 \\ 5 \\ 1 \\ 0 \end{bmatrix} - \frac{-9}{9} \begin{bmatrix} 1 \\ -2 \\ 0 \\ 2 \end{bmatrix} - \frac{9}{9} \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 2 \end{bmatrix}.$$

After normalizing each of these vectors, we have

$$Q = \begin{bmatrix} 1/3 & 2/3 & 0 \\ -2/3 & 1/3 & 2/3 \\ 0 & 2/3 & -1/3 \\ 2/3 & 0 & 2/3 \end{bmatrix}.$$

Finally, as in Example 4 on pages 303–304,

$$R = Q^{T} A = \frac{1}{3} \begin{bmatrix} 1 & -2 & 0 & 2 \\ 2 & 1 & 2 & 0 \\ 0 & 2 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 5 & 5 \\ 0 & 2 & 1 \\ 2 & -4 & 0 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 9 & -18 & -9 \\ 0 & 9 & 9 \\ 0 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 3 & -6 & -3 \\ 0 & 3 & 3 \\ 0 & 0 & 3 \end{bmatrix}.$$

5. (20 points) The linear system

$$x_1 + x_2 + 3x_3 = 11$$

$$-x_1 + x_2 + x_3 = 11$$

$$x_1 - x_2 - x_3 = 0$$

$$x_2 + 2x_3 = 11$$

is inconsistent. Find the normal equations that determine a least squares solution to this system. (Do not solve them.)

This linear system can be written as $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 1 & 3 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 2 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 11 \\ 11 \\ 0 \\ 11 \end{bmatrix}.$$

The normal equations are $A^T A \vec{x} = A^T \vec{b}$. We have

$$A^{T}A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & -1 & 1 \\ 3 & 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 4 & 7 \\ 1 & 7 & 15 \end{bmatrix}$$

and

$$A^T \vec{b} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & -1 & 1 \\ 3 & 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 0 \\ 33 \\ 66 \end{bmatrix}.$$

Therefore the normal equations are

$$3x_1 - x_2 + x_3 = 0$$
$$-x_1 + 4x_2 + 7x_3 = 33$$
$$x_1 + 7x_2 + 15x_3 = 66.$$

6. (25 points) Find a general solution to the differential equation

$$y'' - 2y' + y = 4e^t + 3t.$$

The characteristic polynomial is $r^2-2r+1=(r-1)^2$. A general solution to the associated homogeneous problem is $c_1e^t+c_2te^t$. Using the Method of Undetermined Coefficients to find a particular solution y_p involves a trial solution of the form

$$y_p = At^2e^t + Bt + C .$$

One has

$$y'_p = 2Ate^t + At^2e^t + B$$

$$y''_p = 2Ae^t + 4Ate^t + At^2e^t.$$

Plugging this into the left-hand side of the differential equation gives

$$y_p'' - 2y_p' + y_p = 2Ae^t + 4Ate^t + At^2e^t - 4Ate^t - 2At^2e^5 - 2B + At^2e^t + Bt + C$$
$$= 2Ae^t + Bt + (C - 2B).$$

Setting this equal to $4e^t + 3t$ and equating coefficients gives 2A = 4, B = 3, and C - 2B = 0; therefore A = 2, B = 3, and C = 6. This gives $y_p = 2t^2e^t + 3t + 6$, so a general solution to the nonhomogeneous problem is

$$y = 2t^2e^t + 3t + 6 + c_1e^t + c_2te^t$$
.

7. (16 points) Express the system

$$x'' + 3x' + 2x + 7y = e^{t}$$
$$y' + x' + x - y = \cos t$$
$$x(0) = 3, x'(0) = 5, y(0) = -1$$

as a matrix system in the form $\vec{x}' = A\vec{x} + \vec{f}$, $\vec{x}(0) = \vec{x}_0$. (Do not solve the system.)

With the assignments in the left-hand column and the derivatives in the right:

$$x_1 = x$$
 $x'_1 = x' = x_2$
 $x_2 = x'$ $x'_2 = x'' = e^t - 3x' - 2x - 7y = e^t - 3x_2 - 2x_1 - 7x_3$
 $x_3 = y$ $x'_3 = y' = \cos t - x' - x + y = \cos t - x_2 - x_1 + x + 3$,

we have

$$\vec{x}' = \begin{bmatrix} 0 & 1 & 0 \\ -2 & -3 & -7 \\ -1 & -1 & 1 \end{bmatrix} \vec{x} + \begin{bmatrix} 0 \\ e^t \\ \cos t \end{bmatrix} .$$

8. (30 points) (a). Find a fundamental solution set for the matrix system $\vec{x}' = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \vec{x}$.

The characteristic polynomial of the matrix $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$ is

$$\begin{vmatrix} 2 - \lambda & -1 \\ 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 + 1 = \lambda^2 - 4\lambda + 5$$
,

which has roots $2 \pm i$. The eigenspace for 2 + i is

$$\operatorname{Nul} \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} = \operatorname{Span} \left\{ \begin{bmatrix} i \\ 1 \end{bmatrix} \right\} ,$$

so an eigenvector is $\begin{bmatrix} 0 \\ 1 \end{bmatrix} + i \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. By the box on page 540, a fundamental solution set is therefore

$$e^{2t}(\cos t) \begin{bmatrix} 0 \\ 1 \end{bmatrix} - e^{2t}(\sin t) \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e^{2t}(\sin t) \begin{bmatrix} 0 \\ 1 \end{bmatrix} + e^{2t}(\cos t) \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

(b). Compute the Wronskian associated to this solution set.

$$\begin{vmatrix} -e^{2t} \sin t & e^{2t} \cos t \\ e^{2t} \cos t & e^{2t} \sin t \end{vmatrix} = e^{4t} \begin{vmatrix} -\sin t & \cos t \\ \cos t & \sin t \end{vmatrix} = e^{4t} (-\sin^2 t - \cos^2 t) = -e^{4t}.$$

9. (25 points) (a). Compute the Fourier cosine series for the function $f(x) = e^x$, 0 < x < 1.

We have

$$a_0 = 2 \int_0^1 e^x dx = 2e^x \Big|_0^1 = 2e - 2$$

and, for n > 0,

$$a_n = 2 \int_0^1 e^x \cos n\pi x \, dx$$

$$= \frac{2e^x (\cos n\pi x + n\pi \sin n\pi x)}{n^2 \pi^2 + 1} \Big|_0^1$$

$$= \frac{2(e \cos n\pi - 1)}{n^2 \pi^2 + 1}$$

$$= \frac{2((-1)^n e - 1)}{n^2 \pi^2 + 1}.$$

Therefore

$$f(x) \sim (e-1) + 2\sum_{n=1}^{\infty} \frac{(-1)^n e - 1}{n^2 \pi^2 + 1} \cos n\pi x$$
.

(b). Determine the function that this series converges to, on the interval [-1,1]. It converges to $e^{|x|}$.

10. (32 points) Find a formal solution to the vibrating-string problem governed by the initial-value problem

$$\frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2} , \qquad 0 < x < \pi , \quad t > 0 ;$$

$$u(0,t) = u(\pi,t) = 0 , \qquad t > 0 ;$$

$$u(x,0) = x , \qquad 0 < x < \pi ;$$

$$\frac{\partial u}{\partial t}(x,0) = \sin 3x + \sin 6x , \qquad 0 < x < \pi .$$

You may use memorized formulas about the wave equation for this problem (i.e., you do not have to re-derive the solution).

From the above equations, we have $\alpha=3$ and $L=\pi$. As in Example 2 on pages 576–577,

$$\frac{\partial u}{\partial t}(x,0) = \sin 3x + \sin 6x = \sum_{n=1}^{\infty} n3b_n \sin nx ,$$

so

$$b_3 = \frac{1}{9}$$
 and $b_6 = \frac{1}{18}$.

All other b_n are zero.

The values of a_n can be determined from the Fourier sine series for f(x) = x given at the beginning of the exam booklet:

$$a_n = \frac{2(-1)^{n+1}}{n}$$
, $n = 1, 2, 3, \dots$

Therefore,

$$u(x,t) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \cos 3nt \sin nx + \frac{1}{9} \sin 9t \sin 3x + \frac{1}{18} \sin 18t \sin 6x.$$