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1. (5 points, 1 point each) Circle the correct answer or fill in the blanks.
No justification required, except for (c).

(a) The PDE 2uxx + (x2)uxy + (ey)u = sin(x) is

LINEAR NONLINEAR

(b) The PDE 2uxx + 5uy = 3u is:

HOMOGENEOUS INHOMOGENEOUS

(c) The type of the second-order PDE 2uxx + 3uxy + uyy + 6ux +
8uy − u = 0 is

because:

(d) Write out your favorite PDE that is neither first-order nor the
Laplace/heat/wave equation
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2. (25 points) Find a solution to the following PDE. Here 0 < x < 1
and 0 < y < π

(
x2
)
uxx + (x)ux + uyy = 0

u(x, 0) = 0 u(x, π) = 0

lim
x→0+

u(x, y) = 0 u(1, y) = y

Hint: At some point, you’ll have to solve a strange ODE. For this
ODE, guess that your solution is of the form xα for some α (or yα

if you’re dealing with Y ), solve for α and then take linear combina-
tions.
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3. (20 points) Solve the following PDE:
4utt − 5uxt + uxx = 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

Note: Derive everything from scratch. The only thing you’re al-
lowed to assume is how to solve first-order PDEs.
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4. (5 points) Find a solution of the following heat equation on the half-
line (here x > 0) 

ut = kuxx

ux(0, t) = 0

u(x, 0) = φ(x)

Write your solution in terms of one integral. No need to write out
the explicit formula for S(x, t) and no need to check that your solu-
tion works.
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5. (10 points) Find the Fourier sine series of f(x) = cos(x) on (0, π).
Simplify your expression as much as you can. Is there a contradic-
tion when you plug in x = 0? Explain.

Hint:

cos(A) sin(B) =
1

2
[sin(B + A) + sin(B − A)]
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6. (10 points) Derive Parseval’s identity for the following expansion
on (0, π)

1 =
∞∑
m=0

Am cos

((
2m+ 1

2

)
x

)
and use it to calculate the sum

∞∑
m=0

1

(2m+ 1)2
= 1 +

1

32
+

1

52
+ · · ·

Note: This is a series we haven’t seen before, so you have to derive
everything from scratch. The only thing you’re allowed to assume
is that the above cosine functions are orthogonal
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7. (10 points) Show that the only solution of the following PDE for
0 < x < 1 is the zero-solution.


ut = −uxxxx − u7

u(0, t) = 0, ux(0, t) = 0

u(1, t) = 0, ux(1, t) = 0

u(x, 0) = 0
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8. (15 = 7 + 8 points) The grand finale!!!

(a) Definition: If F = (F1, · · · , Fn) is a vector field in Rn and f is a
function, then f F = (fF1, · · · , fFn) (you multiply each compo-
nent by f ). Show that

div (f F) = f (div (F)) + (∇f) · F
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(b) Let D be a (connected) region in Rn. Use (a) to solve the following
Laplace equation with Neumann boundary conditions:

∆u = 0 in D
∂u

∂n
= 0 on bdy D


