MATH 54 - MOCK FINAL EXAM

PEYAM RYAN TABRIZIAN

Name:

Instructions: This is a mock final, designed to give you an idea of what the actual final will look like!

1		10
2		15
3		15
4		30
5		15
6		15
Total		100

Date: Friday, August 10th, 2012.

1. (10 points, 2 points each)

Label the following statements as \mathbf{T} or \mathbf{F}. Write your answers in the box below!

NOTE: In this question, you do NOT have to show your work! Don't spend too much time on each question!
(a) If Q has orthogonal columns, then Q is an orthogonal matrix
(b) If $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on W, then $\mathbf{x}-\hat{\mathbf{x}}$ is always orthogonal to $\hat{\mathbf{x}}$.
(c) The least-squares solution $\widetilde{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$ has the property that $\|A \mathbf{x}-\mathbf{b}\| \leq\|A \widetilde{\mathbf{x}}-\mathbf{b}\|$ for every \mathbf{x}
(d) If a set \mathcal{B} is orthogonal, then \mathcal{B} is linearly independent
(e) $\left[\begin{array}{l}a \\ b\end{array}\right] \cdot\left[\begin{array}{l}c \\ d\end{array}\right]=a c$ defines a dot/inner product on \mathbb{R}^{2}.

(a)	
(b)	
(c)	
(d)	
(e)	

2. (15 points) Use the Gram-Schmidt process to find an orthonormal basis for W, where:

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right]\right\}
$$

3. (15 points) Find the least-squares solution and least-squares error to the following (inconsistent) system of equations $A \mathbf{x}=\mathbf{b}$, where:

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

4. (30 points) Solve the following heat equation:

$$
\left\{\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}} & 0<x<1, & t>0 \\
u(0, t) & =u(1, t)=0 & t>0 \\
u(x, 0) & =x & 0<x<1
\end{array}\right.
$$

Note: You may not use ANY for the formulas given in the book! You have to do it from scratch, including the 3 cases.

Note: The following formula might be useful:

$$
\int_{-1}^{1} \cos ^{2}(\pi m x)=\int_{-1}^{1} \sin ^{2}(\pi m x)=1
$$

(Scratch work)
5. (15 points)
(a) (10 points) Find the Fourier cosine series of $f(x)=x^{2}$ on $(0, \pi)$

That is, find A_{m} such that:

$$
x^{2} "=" \sum_{m=0}^{\infty} A_{m} \cos (m x) \quad \text { on }(0, \pi)
$$

Hint: The following formula might be useful:

$$
\int_{-\pi}^{\pi} \cos ^{2}(m x)=\int_{-\pi}^{\pi} \sin ^{2}(m x)=\pi
$$

(b) (5 points) Draw the graph of the function to which the above Fourier series \mathcal{F} converges to on $(-3 \pi, 3 \pi)$
6. (15 points)

Prove the parallelogram identity:

$$
\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}
$$

Note: Do it in general, not just for \mathbb{R}^{n}

