MATH 54 - MOCK FINAL EXAM - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (20 = 15 + 5 points)
(a) Find a diagonal matrix D and an orthogonal matrix P such that
A = PDPT, where:

3 =2 4
A=1-2 6 2
4 2 3

Eigenvalues:
3—A =2 4
det(A—X)=| -2 6-—X 2
4 2 3=
6-X\ 2 -2 2 -2 6—-A
A I TR O +2‘ 4 3—)\‘+4’ 4 2 ’

=B=-XAN)({(6—-XN)B=XN)—4)+2((-2)(3=N) —=8)+4(—4—4(6—-N))
=— N +1202 - 211 - 08

Now, using the rational roots theorem (the possible zeros are
+1,£2,£7,+£14, £49, +98), we get that A = —2 is an eigen-
value, and using long division, we get:

N 12M02 21098 = —(A—2)(\? =142 +49) = —(A=2)(A=7)? =0

Hence the eigenvalues are

Eigenvectors

A= —2:
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5 2 —4 5 =2 4
Nul(A+2I)=Nul |-2 8 2 | =Nul |l -4 -1
4 2 5 _O 18 9_
[1 —4 —1] 1 —4 —1
=Nul |0 18 9 | =Nul |0 2 1
_O 18 9_ 0 0 0
(1 0 1
=Nul |0 1 %
000
-1 2
=Span _71 = Span 1
1 —2
A=T:
3 -2 4 [—4 -2 4
Nul(A—=7I)=Nul |-2 6 2| =Nul|-2 -1 2
4 2 3 _4 2 4
2 1 -2
=Nul |0 0O O
00 0
-1 1 1 1
=Span 11,10 = Span —-21.,10
0 1 0 1
Gram-Schmidt
A= —2:
2
Letu; = | 1 |, then vy = uy, and:
-2
2
Vi1 %
W = = =
' [vall 2

>
Il
N
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1 1
Letu; = |[—2| ,us = |0
0 1
Then:
1
Vi =u; = —2
0
1 1 4 4
. 1 —
VQIUZ—UZ UI: 0] —=[-2]| = % 2
ur-w gl 5| 1 5
And finally:
1 _4
Vi !5 Va2 \/5175
W = = —_— 7VV = = —
Y B R Y B
V45
Conclusion:

Putting everything together, we get A = PDPT, where:

2 1 4
R N
D:070,P:§275@
0 0 7 TO\/—E

(b) Use (a) to write the quadratic form 3z% + 623 + 323 — 4z 29 +
8rix3 + 42923 Without cross-product terms.

The matrix of the quadratic form is:

3 =2 4
A=1-2 6 2
4 2 3

Hence, if you define x = Py, thatisy = PTx, where P is as
above, then the quadratic form becomes:
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=2y + T3 + Ty
2. (20 points, 2 points each)

Mark the following statements as TRUE or FALSE. If the state-
ment is TRUE, don’t do anything. If the statement is FALSE, pro-
vide an explicit counterexample.

(a) If Ais a3 x 3 matrix with eigenvalues A = 0, 2, 3, then A must
be diagonalizable!

TRUE (an n x n matrix with 3 distinct eigenvalues is diago-
nalizable)

(b) There does not exist a 3 x 3 matrix A with eigenvalues A =
1,—1,—1+uq.

TRUE (here we assume A has real entries; eigenvalues always
come in complex conjugate pairs, i.e. if A has eigenvalue —1+
1, it must also have eigenvalue —1 — 1)

(c) If A is a symmetric matrix, then all its eigenvectors are orthog-
onal.

FALSE: Take A to be your favorite symmetric matrix, and,
for example, take v to be one eigenvector, and w to be the
same eigenvector (or a different eigenvector corresponding to
the same eigenvalue). That’s why we had to apply the Gram
Schmidt process to each eigenspace in the previous problem!

(d) If @ is an orthogonal n X n matrix, then Row(Q) = Col(Q).
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TRUE: (since @ is orthogonal, Q7Q = I, so Q is invertible,
hence Row(Q) = Col(Q) = R")

(e) The equation Ax = b, where A is a n X n matrix always has a
unique least-squares solution.

FALSE: Take A to be the zero matrix, and b to be the zero
vector! This statement is true if A has rank n.

(f) If AB = 1,then BA = 1.

FALSE: Let A = [1 0] and B = H Then AB = I, but
BAisn’t even defined!

(g) If A is a square matrix, then Rank(A) = Rank(A?)

FALSE: Let A = [8 (1)], then Rank(A) = 1, but A? =

00
{O O} , 80 Rank(A?%) = 0.

(h) If W is a subspace, and Py is the orthogonal projection of y
onto W, then P*y = Py

TRUE (draw a picture! If you orthogonally project Py =y on
W, you get y)
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(1) If7T:V — W, where dim(V) = 3 and dim(W) = 2, then T
cannot be one-to-one.

TRUE (by Rank-Nullity theorem, dim(Nul(T))+Rank(T) =
3. But Rank(T) can only be at most dim (W) = 2, so dim(Nul(T")) >
0, s0 Nul(T) # {0})

(j) If Ais similar to B, then det(A) = det(B).

TRUE (If A= PBP™, then det(A) = det(B))
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3. (20 points) Solve the following system x’ = Ax, where:

1 2 -1
A=10 1 1
0 -1 1
Eigenvalues:
1—X 2 -1
det(A—X)=| 0 1-Xx 1 |[=(1-X(1-XN*+1)=0
0 -1 1-A

which gives you A = 1,1 £ 1.

Eigenvectors:
A=1
0 2 -1 010 1
Nul(A—I)=Nul [0 0 1 | =Nul|0 0 1| =Span<{ |0
01 O 0 0O 0
A=1+1
[~ 2 —1
Nul(A—(144)I)=Nul |0 —i 1
_0 -1 —1
(1 20 —i
=Nul [0 1 1
_O 0 O
(1 0 2—3
=Nul |0 1 1
_O 0 0

—241
=Span i
1
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Note: Here we used the fact that 1+ = %5 = —i.

Now separate the eigenvector into real and imaginary parts:

—2+1 -2 1
? =10 +¢(l
1 0

Solution: Hence, by the formula on page 598 of the book, our
solution is:

1 -2 1 -2
x(t) = Ae' |0|+B [ e'cos(t) | 0 | —e'sin(t) [1| |+C | e'sin(t) | 0
0 1 0 1

+ €' cos(t)

[ J .
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4. (10 points) Solve the following system x' = Ax, where:
1 -1
=3
Eigenvalues:

—1
—3-=A

which gives A = —1.

det(A—\I) = {1 Z A ] = (1-N)(=3=-N)+4 = A2 +1 = (A+1)2 =0

Eigenvectors

Nul(A +I) = Nul E :ﬂ — Nul B _01} — Span {[1 2]}

Generalized eigenvector:

Now find u such that (A + Iu = B] :

o B o {5 b

Now let s = 0, and you get u = l—ol} .

sty = At [ 5 (s I e[ %))
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5. (15 points) Assume you’re given a coupled mass/spring system with
N:3,m1 :m2:m3:1andk’1:k2:l{3:k’4:1. Find the
proper frequencies and proper modes.

Equation:

x" = Ax, where:

21() 2 1 0
x(t) = |z2(t)|, A=|1 =2 1
23(t) 0 1 -2

Proper frequencies:

Find the eigenvalues of the matrix A: A = —2, —2— \/5, —244/2
Fact: The proper frequencies are ++/)\.

Hence the proper frequencies are:

V=2 = +/2i, :t\/—2—\/§::t(m)i, :I:\/—2+\/§:i( 2—\/§)z'

Proper modes:

To find the modes, use the following trick: Since N = 3, N +
1 = 4, hence all the modes will involve sin (q%), where ¢ is some
number. Then:

sin 1% sin 2% sin 3%
vy = [sin(27) | ,v2= [sin(4])|,vs = [sin (67
: T : s : s
sin 34 sin 64 sin 94

Note: The way you get the other values is by using multiples, i.e.
the multiples of 1 are 1, 2 and 3, the multiples of 2 are 2, 4 and 6,
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the multiples of 3 are 3, 6, and 9.

Hence the proper modes are:

V2 1 V2

2 2
V1 = 1 , Vo = 0 , Vg = -1

N 1 V3

ol

2
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6. (20 points) Solve the following heat equation:

ou  0%u
— = 1 t
5 92 0<x <1, >0
ou
0,t) = —(1,t) =0 t>0
u(0,0) = S(1.1)
u(z,0) = =z 0<z<l1

Step 1: Separation of variables. Suppose:

(1) u(z,t) = X(x)T(t)
Plug (1) into the differential equation (), and you get:

(X (@)T(1), = (X(2)T'(t)),
X(2)T'(t) =X"(2)T(t)

Rearrange and get:

X"(x T'(t
o @ _ 1)
X(x)  T(t)
Now );l((f)) only depends on x, but by (2) only depends on ¢, hence
it is constant:
X”(l‘) _)\
3) X(x)
X" (x) =2X(2)
Also, we get:
)
4 T(t)
T'(t) =XT'(t)

but we’ll only deal with that later (Step 4)
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Step 2: Consider (3):
X"(z) = XX (z)

Note: Always start with X (x), do NOT touch 7'(¢) until right at
the end!

Now use the boundary conditions in ():

w(0,8) = X(0)T'(£) = 0 = X(0)T(t) = 0 = X(0) =0

u(L,t) = X()T(t) = 0 = X(1)T(t) =0 = X(1) =0

Hence we get:

X"(z) =A\X(z)
(5) X(0) =0
X(1) =0

Step 3: Eigenvalues/Eigenfunctions. The auxiliary polynomial of
B)isp(\) =r* =\

Now we need to consider 3 cases:
Case 1: A\ > 0, then A\ = w?, where w > 0
Then:

- A=0=>r—-w?=0=>r=+4w

Therefore:

X(x) = Ae¥* 4+ Be™*
Now use X (0) = 0and X (1) =0:

X(0)=0=A+B=0=B=—-A= X(z) = Ac*" — Ae™**

X1)=0=Ae"-Ae“=0=2 A" =Aec“= " =ec“"mw=—w=>w=0

But this is a contradiction, as we want w > 0.
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Case 2: A = 0, then r = 0, and:

X(z) = A" + Bre®™ = A + Bx
And:

X0)=0=A=0= X(z) =Bz

X(1)=0=B=0=X(z)=0
Again, a contradiction (we want X =" 0, because otherwise u(x,t) =
0)

Case 3: A\ < 0, then A\ = —w?, and:

- A=0=>r"+w=0=r=4wi
Which gives:

X(z) = Acos(wz) + Bsin(wz)
X

c
Again, using X (0) = 0, X (1) = 0, we get:

X(0)=0=

AN

=0 = X(z) = Bsin(wz)

X(1)=0= Bsin(w) =0=sin(w) =0=w=mm, (m=12,--+)
This tells us that:

2= —(mm)?* (m=1,2,---)

Eigenfunctions: X (z) = sin(wz) = sin(mmzx)

Eigenvalues:\ = —w

(6)

Step 4: Deal with (4), and remember that A = —(7wm)*:

T'(t) = AT(t) = T(t) = AeM = T(t) = A ™™ m=1,2,--

Note: Here we use ;17,1 to emphasize that Z:n depends on m.

Step 5: Take linear combinations:

(7) u(z,t) = i Tt)X(x) = i Ape” T gin (rma)

m=1 m=1
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Step 6: Use the initial condition u(x,0) = z in ():

oo
(8) u(z,0) = Z A, sin(mmx) = x on(0, 1)
m=1
Now we want to express x as a linear combination of sines, so we
have to use a sine series (that’s why we used Z;n instead of A,,):

— 2 1
A, = x sin(mmaz)dz

cos mma)]t b cos(mmu)
) } S
o Jo ™

_ 2( cos(mm) cos(wmx) dx)

0 ™n

el “?i;”;?];)

m+1

_ 2D —1,2,--
™m (m 20

Step 7: Conclude using (9)

— 2(—1)m*H! 2
) Z —(mm)%t gin(mma)

m=1
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7. (10 points) Solve the following wave equation:

0%u 0%u
w(z,0) = e —00 < x <00
0
a—qz(x, 0) = sin(z) —00 < & < 00

Hint: Careful! Do not use separation of variables for this, be-
cause —oo0 < x < oo. Use d’Alembert’s formula!

By d’Alembert’s formula on page 684 in the book (formula (32)),
we get:

T+at
u(e,t) = £(f(z +ot) + f(z — at)) + i/ o(s)ds

20& —at

Here @ = /16 = 4, and f(z) = u(z,0) = e, g(z) =

u(x,0) = sin(x).

Moreover, [ sin(s) = — cos(s), hence:

1
u(z,t) = <e_(x+4t)2 + e_($_4t)2) + S (cos(z — 4t) — cos(x + 4t))

N | —
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8. (10 points) Solve the following equation using either undetermined
coefficients or variation of parameters:

y/l+2y/+y:€t

Homogeneous equation:

Aux: 72 + 2r + 1 = (r + 1)* = 0, which gives r = —1 (double
root). Hence:

yo(t) = Ae™" + Bte™"
Inhomogeneous equation:

Undetermined coefficients:

Guess y,(t) = Ae' (that’s ok, because the root » = —1 doesn’t
coincide with the inhomogeneous term ¢')

Then, if you plug in y, into the differential equation, you get:

Ael + 24! + Aet =¢€!

4Aet =¢t
4A =1

1

A==

4

Therefore y,(t) = 1¢’, and:

1
y(t) = Ae™" + Bte " + Zet

Variation of parameters:

First make sure the coefficient of ¢ is 1. Check.
Suppose y,(t) = vy (t)e™ + v (t)te .

Then let W(t) be the Wronskian matrix:
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Notice that:

detW)(t) =e (e —te ) +el(te ) = —te ™ +te =

Hence:
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And hence:

1
y(t) = Ae™' + Bte " +te' + Zet
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Bonus (5 points)
Disclaimer: This problem is slightly harder than the other ones.
It’s just meant for the people who’re bored and want an extra chal-
lenge! Only attempt it if you truly understand vector spaces and

linear transformations!

Let V' be the vector space of infinitely differentiable functions f
from R to R.

Define 7 :V — Vby: T(y) = y" — 3y + 2y.

(a) Show T'is a linear transformation.

T(yr+1y2) = (1+y2)" =3(1+y2) +2(1+y2) = (v — 3yy + 2u1)+(ys — 3ys + 2y2) = T(y1)+T(y2

T(cy) = (cy)" = 3(cy)' + 2(cy) = c(y" — 3y’ + 2y) = T(y)

(b) Find Nul(T).

Nul(T) is the set of y such that T'(y) = 0, thatis ¢y’ —3y'+2y =
0.

The auxiliary polynomial is 72 — 3r +2 = (r — 1)(r — 2) = 0,
which gives r = 1, r = 2, so:

y(t) = Ae' + Be*
which says that:

Nul(T) = Span {¢', e*}
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(c) Is T one-to-one?

No, since Nul(T) # {0}

(d) Show T is onto. Namely, given f in V, show that T'(y) = f
has at least one solution.

Fix f, and we need to find a y such that T'(y) = f, that is:

y' =3y +2y=f
So all we need to do is to find a particular solution y to this
differential equation!

But notice that by using variation of parameters, we can actu-
ally give an explicit formula for y !

In (b), we found that the homogeneous solution is y(¢) = Ae™ '+
Be 2,

Variation of parameters:

Now suppose y(t) = vi(t)e™" + vy(t)e 2.

Define the Wronskian matrix:

—~

Then det(W (t)) = —e 3.

Hence:
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Now solve the following equation:

Hence v} (t) = e'f(t), sovi(t) = [e'f(t)dt
And vh(t) = —e* f(t), so va(t) = [ —e* f(t)dt.

This gives the y that we’re looking for:
y(t) = va(D)e +va(t)e = </ etf<t>dt) e+ (/ _62tf(t)dt)

(e) Why does this not contradict the theorem in linear algebra that
says “If T" is an onto linear transformation, then 7" is also one-
to-one”’?

The theorem only holds for finite-dimensional vector spaces!
In this example, V' is infinite-dimensional, because it contains
{1,z,22,-- -}, which is an infinite linearly independent subset
of V.



