
MATH 54 - MOCK FINAL EXAM - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (20 = 15 + 5 points)
(a) Find a diagonal matrix D and an orthogonal matrix P such that

A = PDP T , where:

A =

 3 −2 4
−2 6 2
4 2 3



Eigenvalues:

det(A− λI) =

∣∣∣∣∣∣
3− λ −2 4
−2 6− λ 2
4 2 3− λ

∣∣∣∣∣∣
=(3− λ)

∣∣∣∣ 6− λ 2
2 3− λ

∣∣∣∣+ 2

∣∣∣∣ −2 2
4 3− λ

∣∣∣∣+ 4

∣∣∣∣ −2 6− λ
4 2

∣∣∣∣
=(3− λ) ((6− λ)(3− λ)− 4) + 2 ((−2)(3− λ)− 8) + 4 (−4− 4(6− λ))
=− λ3 + 12λ2 − 21λ− 98

Now, using the rational roots theorem (the possible zeros are
±1,±2,±7,±14,±49,±98), we get that λ = −2 is an eigen-
value, and using long division, we get:

−λ3+12λ2−21λ−98 = −(λ−2)(λ2−14λ+49) = −(λ−2)(λ−7)2 = 0

Hence the eigenvalues are λ = −2, 7

Eigenvectors

λ = −2:
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Nul(A+ 2I) = Nul

 5 2 −4
−2 8 2
4 2 5

 =Nul

5 −2 4
1 −4 −1
0 18 9


=Nul

1 −4 −10 18 9
0 18 9

 = Nul

1 −4 −10 2 1
0 0 0


=Nul

1 0 1
0 1 1

2
0 0 0


=Span


−1−1

2
1

 = Span


 2

1
−2


λ = 7:

Nul(A− 7I) = Nul

 3 −2 4
−2 6 2
4 2 3

 =Nul

−4 −2 4
−2 −1 2
4 2 4


=Nul

2 1 −2
0 0 0
0 0 0


=Span


−1

2
1
0

 ,
10
1

 = Span


 1
−2
0

 ,
10
1


Gram-Schmidt
λ = −2:

Let u1 =

 2
1
−2

, then v1 = u1, and:

w1 =
v1

‖v1‖
=

 2
3
1
3−2
3


λ = 7:
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Let u1 =

 1
−2
0

 ,u2 =

10
1

.

Then:

v1 = u1 =

 1
−2
0



v2 = u2 −
u2 · u1

u1 · u1

=

10
1

− 1

5

 1
−2
0

 =

4
5
2
5
1

 ˜
42
5


And finally:

w1 =
v1

‖v1‖
=

 1√
5
−2√
5

0

 ,w2 =
v2

‖v2‖
=

 4√
45
2√
45
5√
45



Conclusion:
Putting everything together, we get A = PDP T , where:

D =

−2 0 0
0 7 0
0 0 7

 , P =

 2
3

1√
5

4√
45

1
3

−2√
5

2√
45

−2
3

0 5√
45



(b) Use (a) to write the quadratic form 3x21+6x22+3x23− 4x1x2+
8x1x3 + 4x2x3 without cross-product terms.

The matrix of the quadratic form is:

A =

 3 −2 4
−2 6 2
4 2 3


Hence, if you define x = Py, that is y = P Tx, where P is as
above, then the quadratic form becomes:
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−2y21 + 7y22 + 7y23

2. (20 points, 2 points each)

Mark the following statements as TRUE or FALSE. If the state-
ment is TRUE, don’t do anything. If the statement is FALSE, pro-
vide an explicit counterexample.

(a) If A is a 3× 3 matrix with eigenvalues λ = 0, 2, 3, then A must
be diagonalizable!

TRUE (an n × n matrix with 3 distinct eigenvalues is diago-
nalizable)

(b) There does not exist a 3 × 3 matrix A with eigenvalues λ =
1,−1,−1 + i.

TRUE (here we assume A has real entries; eigenvalues always
come in complex conjugate pairs, i.e. if A has eigenvalue−1+
i, it must also have eigenvalue −1− i)

(c) If A is a symmetric matrix, then all its eigenvectors are orthog-
onal.

FALSE: Take A to be your favorite symmetric matrix, and,
for example, take v to be one eigenvector, and w to be the
same eigenvector (or a different eigenvector corresponding to
the same eigenvalue). That’s why we had to apply the Gram
Schmidt process to each eigenspace in the previous problem!

(d) If Q is an orthogonal n× n matrix, then Row(Q) = Col(Q).
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TRUE: (since Q is orthogonal, QTQ = I , so Q is invertible,
hence Row(Q) = Col(Q) = Rn)

(e) The equation Ax = b, where A is a n× n matrix always has a
unique least-squares solution.

FALSE: Take A to be the zero matrix, and b to be the zero
vector! This statement is true if A has rank n.

(f) If AB = I , then BA = I .

FALSE: Let A =
[
1 0

]
and B =

[
1
0

]
. Then AB = I , but

BA isn’t even defined!

(g) If A is a square matrix, then Rank(A) = Rank(A2)

FALSE: Let A =

[
0 1
0 0

]
, then Rank(A) = 1, but A2 =[

0 0
0 0

]
, so Rank(A2) = 0.

(h) If W is a subspace, and Py is the orthogonal projection of y
onto W , then P 2y = Py

TRUE (draw a picture! If you orthogonally project Py = ŷ on
W , you get ŷ)
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(i) If T : V → W , where dim(V ) = 3 and dim(W ) = 2, then T
cannot be one-to-one.

TRUE (by Rank-Nullity theorem, dim(Nul(T ))+Rank(T ) =
3. ButRank(T ) can only be at most dim(W ) = 2, so dim(Nul(T )) >
0, so Nul(T ) 6= {0})

(j) If A is similar to B, then det(A) = det(B).

TRUE (If A = PBP−1, then det(A) = det(B))
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3. (20 points) Solve the following system x′ = Ax, where:

A =

1 2 −1
0 1 1
0 −1 1



Eigenvalues:

det(A− λI) =

∣∣∣∣∣∣
1− λ 2 −1
0 1− λ 1
0 −1 1− λ

∣∣∣∣∣∣ = (1− λ)
(
(1− λ)2 + 1

)
= 0

which gives you λ = 1, 1± i.

Eigenvectors:

λ = 1:

Nul(A− I) = Nul

0 2 −1
0 0 1
0 1 0

 =Nul

0 1 0
0 0 1
0 0 0

 = Span


10
0


λ = 1 + i

Nul(A− (1 + i)I) =Nul

−i 2 −1
0 −i 1
0 −1 −i


=Nul

1 2i −i
0 1 i
0 0 0


=Nul

1 0 2− i
0 1 i
0 0 0


=Span


−2 + i

i
1
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Note: Here we used the fact that 1
i
= i

i2
= −i.

Now separate the eigenvector into real and imaginary parts:−2 + i
i
1

 =

−20
1

+ i

11
0



Solution: Hence, by the formula on page 598 of the book, our
solution is:

x(t) = Aet

10
0

+B
et cos(t)

−20
1

− et sin(t)
11
0

+C

et sin(t)
−20

1

+ et cos(t)

11
0
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4. (10 points) Solve the following system x′ = Ax, where:

A =

[
1 −1
4 −3

]

Eigenvalues:

det(A−λI) =
[
1− λ −1
4 −3− λ

]
= (1−λ)(−3−λ)+4 = λ2+2λ+1 = (λ+1)2 = 0

which gives λ = −1.

Eigenvectors

Nul(A+ I) = Nul

[
2 −1
4 −2

]
= Nul

[
2 −1
0 0

]
= Span

{[
1 2

]}

Generalized eigenvector:

Now find u such that (A+ I)u =

[
1
2

]
:[

2 −1 | 1
4 −2 | 2

]
=

[
2 −1 | 1
0 0 | 0

]
=

{[
0
−1

]
+ s

[
1
2

]
| s ∈ R

}
Now let s = 0, and you get u =

[
0
−1

]
.

Solution:

x(t) = Ae−t
[
1
2

]
+B

(
te−t

[
1
2

]
+ e−t

[
0
−1

])
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5. (15 points) Assume you’re given a coupled mass/spring system with
N = 3, m1 = m2 = m3 = 1 and k1 = k2 = k3 = k4 = 1. Find the
proper frequencies and proper modes.

Equation:

x′′ = Ax, where:

x(t) =

x1(t)x2(t)
x3(t)

 , A =

−2 1 0
1 −2 1
0 1 −2



Proper frequencies:

Find the eigenvalues of the matrixA: λ = −2,−2−
√
2,−2+

√
2

Fact: The proper frequencies are ±
√
λ.

Hence the proper frequencies are:

±
√
−2 = ±

√
2i, ±

√
−2−

√
2 = ±

(√
2 +
√
2

)
i, ±

√
−2 +

√
2 = ±

(√
2−
√
2

)
i

Proper modes:

To find the modes, use the following trick: Since N = 3, N +
1 = 4, hence all the modes will involve sin

(
q π
4

)
, where q is some

number. Then:

v1 =

sin (1π4 )sin
(
2π
4

)
sin
(
3π
4

)
 ,v2 =

sin (2π4 )sin
(
4π
4

)
sin
(
6π
4

)
 ,v3 =

sin (3π4 )sin
(
6π
4

)
sin
(
9π
4

)


Note: The way you get the other values is by using multiples, i.e.
the multiples of 1 are 1, 2 and 3, the multiples of 2 are 2, 4 and 6,
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the multiples of 3 are 3, 6, and 9.

Hence the proper modes are:

v1 =


√
2
2
1√
2
2

 ,v2 =

 1
0
−1

 ,v3 =


√
2
2
−1
−
√
2
2
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6. (20 points) Solve the following heat equation:
∂u

∂t
=

∂2u

∂x2
0 < x < 1, t > 0

u(0, t) =
∂u

∂x
(1, t) = 0 t > 0

u(x, 0) = x 0 < x < 1

Step 1: Separation of variables. Suppose:

(1) u(x, t) = X(x)T (t)

Plug (1) into the differential equation (), and you get:

(X(x)T (t))t =(X(x)T (t))tt

X(x)T ′(t) =X ′′(x)T (t)

Rearrange and get:

(2)
X ′′(x)

X(x)
=
T ′(t)

T (t)

Now X′′(x)
X(x)

only depends on x, but by (2) only depends on t, hence
it is constant:

(3)
X ′′(x)

X(x)
=λ

X ′′(x) =λX(x)

Also, we get:

(4)
T ′(t)

T (t)
=λ

T ′(t) =λT (t)

but we’ll only deal with that later (Step 4)
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Step 2: Consider (3):

X ′′(x) = λX(x)

Note: Always start with X(x), do NOT touch T (t) until right at
the end!

Now use the boundary conditions in ():

u(0, t) = X(0)T (t) = 0⇒ X(0)T (t) = 0⇒ X(0) = 0

u(1, t) = X(1)T (t) = 0⇒ X(1)T (t) = 0⇒ X(1) = 0

Hence we get:

(5)


X ′′(x) =λX(x)

X(0) =0

X(1) =0

Step 3: Eigenvalues/Eigenfunctions. The auxiliary polynomial of
(5) is p(λ) = r2 − λ

Now we need to consider 3 cases:

Case 1: λ > 0, then λ = ω2, where ω > 0

Then:

r2 − λ = 0⇒ r2 − ω2 = 0⇒ r = ±ω
Therefore:

X(x) = Aeωx +Be−ωx

Now use X(0) = 0 and X(1) = 0:

X(0) = 0⇒ A+B = 0⇒ B = −A⇒ X(x) = Aeωx − Ae−ωx

X(1) = 0⇒ Aeω−Ae−ω = 0⇒ Aeω = Ae−ω ⇒ eω = e−ω ⇒ ω = −ω ⇒ ω = 0

But this is a contradiction, as we want ω > 0.
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Case 2: λ = 0, then r = 0, and:

X(x) = Ae0x +Bxe0x = A+Bx

And:

X(0) = 0⇒ A = 0⇒ X(x) = Bx

X(1) = 0⇒ B = 0⇒ X(x) = 0

Again, a contradiction (we wantX��≡ 0, because otherwise u(x, t) ≡
0)

Case 3: λ < 0, then λ = −ω2, and:

r2 − λ = 0⇒ r2 + ω2 = 0⇒ r = ±ωi
Which gives:

X(x) = A cos(ωx) +B sin(ωx)

Again, using X(0) = 0, X(1) = 0, we get:

X(0) = 0⇒ A = 0⇒ X(x) = B sin(ωx)

X(1) = 0⇒ B sin(ω) = 0⇒ sin(ω) = 0⇒ ω = πm, (m = 1, 2, · · · )
This tells us that:

(6)
Eigenvalues:λ = −ω2 = −(πm)2 (m = 1, 2, · · · )

Eigenfunctions:X(x) = sin(ωx) = sin(πmx)

Step 4: Deal with (4), and remember that λ = −(πm)2:

T ′(t) = λT (t)⇒ T (t) = Aeλt = T (t) = Ãme
−(πm)2t m = 1, 2, · · ·

Note: Here we use Ãm to emphasize that Ãm depends on m.

Step 5: Take linear combinations:

(7) u(x, t) =
∞∑
m=1

T (t)X(x) =
∞∑
m=1

Ãme
−(πm)2t sin(πmx)
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Step 6: Use the initial condition u(x, 0) = x in ():

(8) u(x, 0) =
∞∑
m=1

Ãm sin(πmx) = x on(0, 1)

Now we want to express x as a linear combination of sines, so we
have to use a sine series (that’s why we used Ãm instead of Am):

Ãm =
2

1

∫ 1

0

x sin(πmx)dx

= 2

([
−xcos(πmx)

πm

]1
0

−
∫ 1

0

−cos(πmx)

πm
dx

)

= 2

(
−cos(πm)

πm
+

∫ 1

0

cos(πmx)

πm
dx

)
= 2

(
−(−1)m

πm
+

[
sin(πmx)

(πm)2

]1
0

)

=
2(−1)m+1

πm
(m = 1, 2, · · · )

Step 7: Conclude using (9)

(9) u(x, t) =
∞∑
m=1

2(−1)m+1

πm
e−(πm)2t sin(πmx)
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7. (10 points) Solve the following wave equation:
∂2u

∂t2
= 16

∂2u

∂x2
−∞ < x <∞, t > 0

u(x, 0) = e−x
2 −∞ < x <∞

∂u

∂t
(x, 0) = sin(x) −∞ < x <∞

Hint: Careful! Do not use separation of variables for this, be-
cause −∞ < x <∞. Use d’Alembert’s formula!

By d’Alembert’s formula on page 684 in the book (formula (32)),
we get:

u(x, t) =
1

2
(f(x+ αt) + f(x− αt)) + 1

2α

∫ x+αt

x−αt
g(s)ds

Here α =
√
16 = 4, and f(x) = u(x, 0) = e−x

2 , g(x) =
∂u
∂t
(x, 0) = sin(x).

Moreover,
∫
sin(s) = − cos(s), hence:

u(x, t) =
1

2

(
e−(x+4t)2 + e−(x−4t)

2
)
+

1

8
(cos(x− 4t)− cos(x+ 4t))
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8. (10 points) Solve the following equation using either undetermined
coefficients or variation of parameters:

y′′ + 2y′ + y = et

Homogeneous equation:

Aux: r2 + 2r + 1 = (r + 1)2 = 0, which gives r = −1 (double
root). Hence:

y0(t) = Ae−t +Bte−t

Inhomogeneous equation:

Undetermined coefficients:

Guess yp(t) = Aet (that’s ok, because the root r = −1 doesn’t
coincide with the inhomogeneous term et)

Then, if you plug in yp into the differential equation, you get:

Aet + 2Aet + Aet =et

4Aet =et

4A =1

A =
1

4

Therefore yp(t) = 1
4
et, and:

y(t) = Ae−t +Bte−t +
1

4
et

Variation of parameters:

First make sure the coefficient of y′′ is 1. Check.

Suppose yp(t) = v1(t)e
−t + v2(t)te

−t.

Then let W̃ (t) be the Wronskian matrix:
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W̃ (t) =

[
e−t te−t

−e−t e−t − te−t
]

Notice that:

det(W̃ )(t) = e−t(e−t − te−t) + e−t(te−t) = e−2t − te−2t + te−2t = e−2t

Hence:

(
W̃ (t)

)−1
= e2t

[
e−t − te−t −te−t

e−t e−t

]
=

[
et − tet −tet
et et

]

Now solve the following equation:

(
W̃ (t)

)[
v′1(t)
v′2(t)

]
=

[
0
et

]

which gives:

[
v′1(t)
v′2(t)

]
=
(
W̃ (t)

)−1 [0
et

]
=

[
et − tet −tet
et et

] [
0
et

]
=

[
−te2t
e2t

]

Hence v′1(t) = −te2t, so v1(t) =
(
− t

2
+ 1

4

)
e2t

And v′2(t) = e2t, so v2(t) = e2t

2
.

Finally:

yp(t) = v1(t)e
−t + v2(t)te

−t =

(
− t
2
+

1

4

)
et +

t

2
et =

1

4
et
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And hence:

y(t) = Ae−t +Bte−t + tet +
1

4
et
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Bonus (5 points)

Disclaimer: This problem is slightly harder than the other ones.
It’s just meant for the people who’re bored and want an extra chal-
lenge! Only attempt it if you truly understand vector spaces and
linear transformations!

Let V be the vector space of infinitely differentiable functions f
from R to R.

Define T : V → V by: T (y) = y′′ − 3y′ + 2y.

(a) Show T is a linear transformation.

T (y1+y2) = (y1+y2)
′′−3(y1+y2)′+2(y1+y2) = (y′′1 − 3y′1 + 2y1)+(y′′2 − 3y′2 + 2y2) = T (y1)+T (y2)

T (cy) = (cy)′′ − 3(cy)′ + 2(cy) = c(y′′ − 3y′ + 2y) = cT (y)

(b) Find Nul(T ).

Nul(T ) is the set of y such that T (y) = 0, that is y′′−3y′+2y =
0.

The auxiliary polynomial is r2 − 3r+ 2 = (r− 1)(r− 2) = 0,
which gives r = 1, r = 2, so:

y(t) = Aet +Be2t

which says that:

Nul(T ) = Span
{
et, e2t

}
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(c) Is T one-to-one?

No, since Nul(T ) 6= {0}

(d) Show T is onto. Namely, given f in V , show that T (y) = f
has at least one solution.

Fix f , and we need to find a y such that T (y) = f , that is:

y′′ − 3y′ + 2y = f

So all we need to do is to find a particular solution y to this
differential equation!

But notice that by using variation of parameters, we can actu-
ally give an explicit formula for y !

In (b), we found that the homogeneous solution is y(t) = Ae−t+
Be−2t.

Variation of parameters:

Now suppose y(t) = v1(t)e
−t + v2(t)e

−2t.

Define the Wronskian matrix:

W̃ (t) =

[
e−t e−2t

−e−t −2e−2t
]

Then det(W̃ (t)) = −e−3t.

Hence:

(
W̃ (t)

)−1
= −e3t

[
−2e−2t −e−2t
e−t e−t

]
=

[
2et et

−e2t −e2t
]
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Now solve the following equation:

(
W̃ (t)

)[
v′1(t)
v′2(t)

]
=

[
0
f(t)

]
which gives:

[
v′1(t)
v′2(t)

]
=
(
W̃ (t)

)−1 [ 0
f(t)

]
=

[
2et et

−e2t −e2t
] [

0
f(t)

]
=

[
etf(t)
−e2tf(t)

]

Hence v′1(t) = etf(t), so v1(t) =
∫
etf(t)dt

And v′2(t) = −e2tf(t), so v2(t) =
∫
−e2tf(t)dt.

This gives the y that we’re looking for:

y(t) = v1(t)e
−t + v2(t)e

−2t =

(∫
etf(t)dt

)
e−t +

(∫
−e2tf(t)dt

)
e−2t

(e) Why does this not contradict the theorem in linear algebra that
says “If T is an onto linear transformation, then T is also one-
to-one”?

The theorem only holds for finite-dimensional vector spaces!
In this example, V is infinite-dimensional, because it contains
{1, x, x2, · · · }, which is an infinite linearly independent subset
of V .


