Final Exam - Review - Answers

Peyam Ryan Tabrizian

Monday, December 8, 2014

1 Part I

1.

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right], \quad P=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

2. In the original problem, the 1 in \mathbf{b} should be an 11 .

$$
\begin{aligned}
\widetilde{\mathbf{x}} & =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\|A \widetilde{\mathbf{x}}-\mathbf{b}\| & =\sqrt{84}=2 \sqrt{21}
\end{aligned}
$$

3. (a) $A=Q R$, where:

$$
Q=\left[\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{2}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right], \quad R=\left[\begin{array}{cc}
3 & 5 \\
0 & -1
\end{array}\right]
$$

(b) $\hat{\mathbf{b}}=\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]$
(c) $\widetilde{\mathbf{x}}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$ (solve $\left.A \widetilde{\mathbf{x}}=\mathbf{b}\right)$
(d) $\widetilde{\mathbf{x}}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$ (solve $R \widetilde{\mathbf{x}}=Q^{T} \mathbf{b}$)
4. $\hat{f}(x)=2 \sin (x), g(x)=f(x)-\hat{f}(x)=x-2 \sin (x)$
5. Since I didn't have time to go over this during the review session, you can find detailed explanations at the end of this document.
(a) FALSE
(b) TRUE
(c) TRUE
(d) TRUE
(e) TRUE
(f) TRUE
(g) FALSE

2 Part II

1. See Midterm 2 - review for the eigenvalues/eigenvectors

$$
\begin{array}{r}
\mathbf{x}(t)=A e^{3 t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+B\left(e^{t} \cos (2 t)\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]-e^{t} \sin (2 t)\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right) \\
+C\left(e^{t} \cos (2 t)\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+e^{t} \sin (2 t)\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right)
\end{array}
$$

2.

$$
\mathbf{x}(t)=A e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+B\left(t e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{2 t}\left[\begin{array}{c}
0 \\
-1 / 3
\end{array}\right]\right)
$$

3. $(0,2)$
4. $y(x)=A x \sin (x) e^{x}+B \ln (x) e^{x}$ (just show your functions are linearly independent by canceling out the e^{x} first, and then using the Wronskian at $x=\pi$)
5. $y(t)=A e^{-1 / 2 t}+B e^{-t} \cos (2 t)+C e^{-t} \sin (2 t)$, and use the squeeze theorem to show $\lim _{t \rightarrow \infty} y(t)=0$
6. First of all, the solution to the homogeneous equation is:

$$
\begin{aligned}
& y_{0}(t)=A+B t+C t^{2}+D e^{t}+E t e^{t}+F t^{2} e^{t}+ \\
& \quad G \cos (2 t)+H \sin (2 t)+I t \cos (2 t)+J t \sin (2 t)+ \\
& \quad K e^{t} \cos (2 t)+L e^{t} \sin (2 t)+M t e^{t} \cos (2 t)+N t e^{t} \sin (2 t)
\end{aligned}
$$

(a) $y(t)=\left(A t^{2}+B t+C\right) t^{3} e^{t}$
(b) $y(t)=(A t+B) t^{2} e^{t} \cos (2 t)+(C t+D) t^{2} e^{t} \sin (2 t)$
(c) $y(t)=A e^{t} \cos (3 t)+B e^{t} \sin (3 t)$
(d) $y(t)=A e^{2 t} \cos (2 t)+B e^{2 t} \sin (2 t)$
(e) $y(t)=\left(A t^{2}+B t+C\right) t^{2} \cos (2 t)+\left(D t^{2}+E t+F\right) t^{2} \sin (2 t)$

3 Part III

$$
u(x, t)=A_{0}+B_{0} t+\sum_{m=1}^{\infty}\left(A_{m} \cos (2 \pi m t)+B_{m} \sin (2 \pi m t)\right) \cos (\pi m x)
$$

where:

$$
\begin{aligned}
& A_{0}=-\frac{7}{6}, \quad A_{m}=\frac{1}{(\pi m)^{2}}\left(2(-1)^{m+1}+6\right) \quad(m \geq 1) \\
& B_{0}=0, \quad B_{1}=\frac{3}{2 \pi}, \quad B_{2}=\frac{5}{4 \pi}, \quad B_{m}=0 \quad(m \geq 3)
\end{aligned}
$$

Note: For a complete solution to a similar problem, look at Problem 9 on my mock exam.

4 Appendix: Solutions to the T / F extravaganza

(a) FALSE

Eigenvectors corresponding to different eigenvalues are orthogonal. For example, in the matrix in Problem 1, two eigenvectors corresponding to $\lambda=2$ are $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$, and they are not orthogonal. This is precisely why you have to apply Gram-Schmidt to make them orthogonal.
(b) TRUE

Since orthogonal matrices are square and $Q^{T} Q=I$, this implies that Q is invertible and $Q^{-1}=Q^{T}$. But by definition of invertible matrices, we have $Q^{-1} Q=Q Q^{-1}=I$, but since $Q^{-1}=Q^{T}$, we get $Q^{T} Q=Q Q^{T}=I$, so in particular $Q Q^{T}=I$.
(c) TRUE

This is precisely the point of the Gram-Schmidt process, namely given a set \mathcal{B} of vectors, produce an orthonormal set \mathcal{B}^{\prime} such that Span $\mathcal{B}^{\prime}=$ $\operatorname{Span} \mathcal{B}$ (i.e. both sets have the same span). For example, suppose $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}$ are the columns of A, and you apply Gram-Schmidt to obtain $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}$, then if $A^{\prime}=\left[\begin{array}{lll}\mathbf{w}_{\mathbf{1}} & \mathbf{w}_{\mathbf{2}} & \mathbf{w}_{\mathbf{3}}\end{array}\right]$, then $\operatorname{Col}\left(A^{\prime}\right)=\operatorname{Span}\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}=$ $\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}=\operatorname{Col}(A)$. By the way, this is precisely why in Problem $3 b$, we have $\operatorname{Col}(Q)=\operatorname{Col}(A)$ (because you obtain Q by applying Gram-Schmidt to the columns of A)
(d) TRUE

If A is orthogonal, then A is invertible, so $\operatorname{Row}(A)=\mathbb{R}^{n}=\operatorname{Col}(A)$
(e) TRUE

There are really only two inequalities we have learned in this course: The Cauchy-Schwarz inequality and the Triangle inequality.

The Cauchy-Schwarz inequality (which we'll need here) says:

$$
f \cdot g \leq\|f\|\|g\|
$$

Applying this with $f \cdot g=\int_{0}^{1} f(x) g(x) d x$, and:

$$
\|f\|=(f \cdot f)^{\frac{1}{2}}=\left(\int_{0}^{1} f(x) f(x) d x\right)^{\frac{1}{2}}=\left(\int_{0}^{1}(f(x))^{2} d x\right)^{\frac{1}{2}}
$$

And similar with g, we obtain in fact that:

$$
\int_{0}^{1} f(x) g(x) d x \leq\left(\int_{0}^{1}(f(x))^{2} d x\right)^{\frac{1}{2}}\left(\int_{0}^{1}(g(x))^{2} d x\right)^{\frac{1}{2}}
$$

(f) TRUE

This is precisely because $\hat{\mathbf{b}}$ is in $\operatorname{Col}(A)$, and therefore by definition of $\operatorname{Col}(A)$, the equation $A \widetilde{\mathbf{x}}=\hat{\mathbf{b}}$ is guaranteed to have at least one solution.
(g) FALSE

There could be more than one least-squares solution. For example, take $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then $A^{T} A \widetilde{\mathbf{x}}=A^{T} \mathbf{b}$ becomes $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \widetilde{\mathbf{x}}=\mathbf{0}$, which has infinitely many solutions. In fact, there is a theorem which says: there is only one least-squares solution if and only if $\operatorname{Rank}(A)=n$ (where n is the number of columns of A)

