LECTURE 1 - SYSTEMS OF EQUATIONS

Sunday, September 15, 2019 6:00 PM

I- INTRODUCTION

Helle evenyone and welcome to Math 3.41 My name is Peyam and T'll be your instructor this
auarterl
First of all, notice the Pi in my name, and that's because I love Math and I love food.
By the way, I know people like to call me Prof. Tabrizian, but
please, call me Peyam or Dr. Peyam, like my awesome
YouTube channel, which hit 30,000 subscribers last week!
l poistics: All the info is on the sullabus, which can be found on
my website
Course: This course meets MWF here, but whether you show
up is up to you. There's also discussion section, which is on
Tu/Th, and which is optional
OH: W 12:30 - 1:30 pm, Th 2-3 pm. Please come, I'd be happy
to help!
Textbook: When I I A-ed for 3A at Berkeley, it was called
Lay, but now it's called Lay-Lay-McDonald. It's pretty good,
רפמל ודי
Gradina:
• HW 0 %
• Quizzes 20 % every Th during discussion section
including the week of the midterm. Lowest 2 guizzes
dropped. No guiz during Week 0 or during Thanksgiving
week
 Midterm 30%, on Friday November 1 in class. If your final
exam score is better than your midterm score, then it can
replace your midterm score
• Final 50 %, on Friday, December 13, 1:30 - 3:30 pm,
cumulative
Grades: This class is (probably) going to be curved. I will
assign grades according to the standard math department
Curve, which is: 20 % A, 29 % B, 30 % C, 19 % D, 10 % F
TT- SYSTEMS OF LINEAR FOUATIONS
WHAT IS LINEAR ALGEBRA? It's the math of solving
systems of (linear) equations. And in fact, let me lay all my
cards on the table and tell you the most important technique
in this course (= Master Sword of Linear Algebra)
Example: Solve the following system

$$\rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -3 & 2 & -2 \\ 0 & -6 & 4 & 4 \end{bmatrix} (x-2)$$

$$\rightarrow \begin{bmatrix} 0 & 2 & 1 & 0 \\ 0 & -3 & 2 & -2 \\ 0 & -6 & 4 & 4 \end{bmatrix} TRIANGULAR$$
Form

Note: 1,-3,-8 are called pivots (see next lecture)

STEP 3: BACKSUBSTITUTION (what does that mean in terms of x, y, z)

$$\begin{cases} x + 27 + t = 0 & x = -27 - 2 = -2(0) - (-1) = 1 \Rightarrow x = 1 \\ -37 + 22 = -2 & -37 = -2 - 22 = -2 - 2(-1) = 0 \Rightarrow 7 = 0 \\ -82 = 8 & 2 = -1 \end{cases}$$

=) SOLUTION
$$X = 1, \gamma = 0, Z = -1$$
 TA-DAAA...

POINT: Using this technique (called row-reduction), we transformed the system into one that's much easier to solve!

CANNOT emphasize how important this is!

ALL we're going to do this quarter is row-reduce!

And in fact, if you're ever stuck on a linear algebra question, just row reduce and it'll give you the answer (or at least partial credit)

III- INCONSISTENT SYSTEMS

Ok, now that we've seen how wonderful this is, let's solve the following system

Example: "Solve"

$$\begin{cases}
\gamma + 4z = -5 \\
x + 3\gamma + 5z = -2 \\
3x + 7\gamma + 7z = 6
\end{cases}$$
(better to have

$$\begin{cases}
0 & 1 & 4 & | & -5 \\
1 & 3 & 5 & | & -2 \\
3 & 7 & 7 & | & 6
\end{cases}$$
(better to have

$$\begin{cases}
0 & 1 & 4 & | & -5 \\
1 & 3 & 5 & | & -2 \\
0 & 1 & 4 & | & -5
\end{cases}$$
(better to have

$$\begin{cases}
0's at the bottom
\end{cases}$$

$$\begin{cases} x + k_{\gamma} = -5 \\ 2x - \delta \ \gamma + 6 \end{cases}$$

$$(f \cdot 2) \begin{bmatrix} t - 2 \\ 2 - f \end{bmatrix} \xrightarrow{-5} \begin{bmatrix} 1 + 2 \\ 1 - 4 \end{bmatrix} \xrightarrow{-5} \begin{bmatrix} 0 - 1 \\ -5 \end{bmatrix} \begin{bmatrix} 0 - 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 + 2 \\ 0 - k - 4 \end{bmatrix} \xrightarrow{-5} \begin{bmatrix} 0 - 0 \end{bmatrix}$$

$$By FACT, inconsistent if and only if = -k - 4 = 0 \Rightarrow (k = -4)$$