Welcome to the second part of our systems of equations extravaganza!
Today we'll do more examples, and I'll also give you a more systematic way of solving systems of equations

I- ROW-ECHELON FORM

Example: Solve the following system
$\left\{\begin{array}{r}x+3 y+5 z=6 \\ x-2 y+4 z=-8 \\ y+3 z=0\end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 3 & 5 & 6 \\
1 & -2 & 4 & -8 \\
0 & 1 & 3 & 0
\end{array}\right)^{(x-1)} \longrightarrow\left[\begin{array}{ccc|c}
1 & 3 & 5 & 6 \\
0 & -5 & -1 & -14 \\
0 & 1 & 0 & 0
\end{array}\right] \hat{\jmath} \quad \text { (1 s on top) } } \\
& \text { WANT }=0 \longrightarrow\left[\begin{array}{ccc|c}
1 & 3 & 5 & 6 \\
0 & 1 & 3 & 0 \\
0 & -5) & -1 & -14
\end{array}\right] \downarrow\left(\begin{array}{ll}
x & 5
\end{array}\right.
\end{aligned}
$$

$$
\rightarrow\left[\begin{array}{ccc|c}
(1) & 3 & 5 & 6 \\
0 & 1 & 3 & 0 \\
0 & 0 & 14 & -14
\end{array}\right]
$$

TIRAGULAR FORM
ROW -ECHELON FORM
Note: Pivots are 1, 1, 14 (always nonzero)
Definition: ROW-ECHELON FORM (REF)

1) Entries below and to the left of a pivot are nonzero
2) Rows of O's are at the bottom

Non Examples:

$$
\left[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
0 & 9 & 10 & 11
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 0 & 4 & 5 \\
0 & 6 & 7 & 8
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 4 & 5
\end{array}\right]
$$

$$
\text { BACK TO: } \quad\left[\begin{array}{ccc|c}
1 & 3 & 5 & 6 \\
0 & 1 & 3 & 0 \\
0 & 0 & 14 & -14
\end{array}\right]
$$

Could Backsubstitute, but better: Continue row reducing

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{lll|l}
1 & 3 & 5 & 6 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & -1
\end{array}\right] \hat{\jmath}(x-3) \\
& \left.\rightarrow\left[\begin{array}{ccc|c}
1 & 3 & 5 & 6 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right]\right)(x-5) \\
& \rightarrow\left[\begin{array}{lll|l}
1 & 3 & 0 & 11 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right] \hat{(x-3)} \\
& \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right] \text { RANT } \begin{array}{l}
\text { REDUCED ROW-ECHELON FORM }
\end{array} \\
& \rightarrow
\end{aligned}
$$

Definition: REDUCED ROW-ECHELON FORM

1) Pivots $=1$
2) All the other entries in the column are 0

Non-Examples

$$
\left[\begin{array}{ll}
(2) & 1 \\
0 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

NEAT FACT: RREF is unique

II- INFINITELY MANY SOLUTIONS

Here is why RREF is so useful
Example: Solve

$$
\left\{\begin{aligned}
x+3 y+z+t & =1 \\
-4 x-9 y+2 z-t & =-1 \\
-3 y-6 z-3 t & =-3 \\
y+2 z+t & =1
\end{aligned}\right.
$$

$(\div-3)\left[\begin{array}{cccc|c}1 & 3 & 1 & 1 & 1 \\ -4 & -9 & 2 & -1 & -1 \\ 0 & -3 & -6 & -3 & -3 \\ 0 & 1 & 2 & 1 & 1\end{array}\right] \xrightarrow{\downarrow(\times 4)} \rightarrow\left[\begin{array}{llll|l}1 & 3 & 1 & 1 & 1 \\ 0 & 3 & 6 & 3 & 3 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 & 1\end{array}\right](\div 3)$

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{llll|l}
1 & 3 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 & 1 \\
0 & 1 & 2 & 1 & 1 \\
0 & 1 & 2 & 1 & 1
\end{array}\right] J(x-1) /(x-1) \\
& \rightarrow\left[\begin{array}{cccccc}
1 & (3) & 1 & 1 & 1 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \hat{\gamma(x-3)} \begin{array}{r}
\text { ROW-ECHELON } \\
\text { FOrM }
\end{array} \\
& \rightarrow\left[\begin{array}{cccc|c}
1 & (0) & -5 & -2 & -2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{c}
\text { neovcto now - } \\
\text { CHELa Fin } \\
z
\end{array} \\
& \text { Backsubstitution }\left\{\begin{array}{l}
x-5 z-2 t=-2 \\
y+2 z+t=1 \\
0=0 \\
0=0
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
x=-2+5 z+2 t \\
y=1-2 z-t
\end{array} \quad \leadsto \text { True for every } z \&+!\right. \\
& \text { General Tso'lution: }\left\{\begin{array}{l}
x=-2+5 z+2 t \\
y=1-2 z-t \\
z=z, \text { onE VAnIABLC: } \\
t=t
\end{array}\right.
\end{aligned}
$$

Note: The free variables are ALWAYS in the
non-pivot columns
(Here: 3rd and 4th columns)

III-PIVOTS

UPSHOT: Pivots are IMPORTANT! They tell us if a system has a solution or not!

Example: Suppose a system has a 3×5 augmented matrix whose last column is a pivot column. Is the system consistent?

KNOW:

1) Pivot in the 5th row
2) Pivots are nonzero
3) Entries to the left of a pivot are 0 (by REF)

We have a row of the form $[00001 B L A H]$ with BLAH $\neq 0$
Hence the system is inconsistent by the important fact from the previous lecture

Example: (if time permits)
Same, but this time pivot in every row of the coefficient matrix

No row of the form $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & \text { BLAH }\end{array}\right]$
\Rightarrow CONSISTENT

