Math 2E - Suggested Homework 4

Peyam Tabrizian

Thursday, January 30, 2020

Reading: Sections 15.9, 16.1, and 16.2. For section 15.9, if you understand Example 2, 3, and 4, you'll be fine. Ignore examples 1 and the derivation of the Jacobian. You might also want to check out my YouTube videos about it: Part 1. Part 2, and Part 3. In section 16.1, ignore Examples 4 and 5 (unless you like physics). In section 16.2, ignore Example 3 and all the (awkward) derivations.

Note: For this homework/quiz, in section 16.2, you're only responsible for $\int_{C} f(x, y) d s$ I won't ask you yet about $\int_{C} f(x, y) d x$ or $\int_{C} f(x, y) d y$ or $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, that will be part of HW 5 / Quiz 5.

- Section 15.9: 15, 16, 17, 18, 19 (notice $x y=u$), AP1 from HW3 (if you haven't already done so)
- Section 16.1: 5, 6, 8, 11, $15-18,21,23,26$ (don't sketch)
- Section 16.2: 3, 4, 9, 10, 12

Important Note: I will be out of town from Tu 01/28 until Thu 01/30 because of an on-campus interview. Lecture on W 01/29 is cancelled, and instead there is a make-up lecture on M 01/27 from 5 to $5: 50 \mathrm{pm}$ in SH 134. There will also be YouTube videos covering the material of the make-up lecture, in case you can't make it, See next page for the links. I will also have extra office hours/virtual office hours on that day. Everything else (Monday's lecture, Tuesday/Thursday's discussion, and Friday's lecture) will take place as usual. For your convenience, here is the schedule of this week:

- M 01/27: Lecture as usual 10-11 AM/11-12 PM, OH 12-12:30 PM, Makeup Lecture 5-6 PM in SH 134, Virtual OH 6:30-7 PM
- Tu 01/28: Discussion section as usual
- W 01/29: No lecture/OH/Virtual OH
- Th 01/30: Discussion section + Quiz as usual
- F 01/31: Lecture as usual

Make-up lecture videos: The following videos cover the material that I covered in the make-up lecture:

1. Parametric Equations: Important Review of parametric equations
2. Line Integral: Important definition and example of a line integral
3. Line Integral Example: In case you want more practice with line integrals
4. Line Integral Derivation Important derivation of formula, fair game for the exams
5. Integral over helix: Line integral in 3 dimensions, if you want more practice
