LECTURE 10: LINE INTEGRALS

1. Review: Parametric Equations

Video: Parametric Equations
Today: Line Integrals, which essentially boils down to parametric equations, so let's first review the 3 most important parametrizations.

Example 1: Find parametric equations for the circle centered at $(2,3)$ and radius 4

[^0]\[

$$
\begin{aligned}
x(t)= & 2+4 \cos (t) \\
y(t)= & 3+4 \sin (t) \\
& (0 \leq t \leq 2 \pi)
\end{aligned}
$$
\]

Example 2: Same but the line segment connecting (1,2) and (3,4)

Note: In case you're having doubts about whether to put t or $1-t$, simply plug in $t=0$, in your equations, which should give you $(1,2)$

Example 3: Same but the parabola $y=x^{2}$ connecting $(1,1)$ and $(2,4)$

$$
\begin{aligned}
& x(t)=t \\
& y(t)=t^{2} \quad(1 \leq t \leq 2)
\end{aligned}
$$

2. Line Integrals

Video: Line Integral
Really cool! In calculus, you integrated a function f over an interval $[a, b]$ but today we'll integrate a function over any curve!

Goal: Given a curve C and a function $f(x, y)$, find the area of the fence under f and over C

Notation: $\int_{C} f(x, y) d s=$ Area under f and over C
Example:

$$
\int_{C} x^{2} y d s
$$

C : Quarter circle $x^{2}+y^{2}=4$ in the first quadrant (counterclockwise)
(1) Picture:

(2) Parametrize C:

$$
\begin{aligned}
& x(t)=2 \cos (t) \\
& y(t)=2 \sin (t) \quad\left(0 \leq t \leq \frac{\pi}{2}\right)
\end{aligned}
$$

(3) Integrate: Use following fact (will derive it later, but for now think of it as a Jacobian):

$$
d s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

$$
\begin{aligned}
\int_{C} x^{2} y d s & =\int_{0}^{\frac{\pi}{2}}(x(t))^{2}(y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =\int_{0}^{\frac{\pi}{2}}(2 \cos (t))^{2} 2 \sin (t) \sqrt{(-2 \sin (t))^{2}+(2 \cos (t))^{2}} d t \\
& =\int_{0}^{\frac{\pi}{2}} 8 \cos ^{2}(t) \sin (t) \sqrt{4 \sin ^{2}(t)+4 \cos ^{2}(t)} d t \\
& =\int_{0}^{\frac{\pi}{2}} 8 \cos ^{2}(t) \sin (t) \sqrt{4} d t \\
& =16\left[-\frac{1}{3} \cos ^{3}(t)\right]_{0}^{\frac{\pi}{2}} \quad(u=\cos (t)) \\
& =\frac{16}{3}
\end{aligned}
$$

Remarks:

(1) Small mnemonic: $d s=\sqrt{(d x)^{2}+(d y)^{2}}$ (diagonal length)
(2) Compare with Length $(C)=\int \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$ (from Math 2D), so it's like a length, but with height f

Example:
Video: Line Integral Example

$$
\int_{C} y d s
$$

C : Line from $(2,0)$ to $(5,4)$
(1) Picture:

(2) Parametrize:

$$
\begin{aligned}
& x(t)=(1-t) 2+t(5)=3 t+2 \\
& y(t)=(1-t) 0+t(4)=4 t \quad(0 \leq t \leq 1)
\end{aligned}
$$

(3) Integrate:

$$
\begin{aligned}
\int_{C} y d s & =\int_{0}^{1} y(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =\int_{0}^{1} 4 t \sqrt{3^{2}+4^{2}} d t \\
& =\int_{0}^{1} 4 t(5) \\
& =\int_{0}^{1} 20 t \\
& =\cdots \\
& =10
\end{aligned}
$$

Interpretations

- $\int_{C} f=$ Area of fence under f, over C
- If $f=$ Force, $\int_{C} f d s=$ Work done by f over C
- If $f=$ Density, then $\int_{C} f d s=$ Mass of (wire) C

Note: For even more practice, you can check out this older video: Line Integral of a Function

3. What is $d s$?

Video: Line Integral Derivation
Idea: If C is a curve and you change x and y a little bit to get $d x$ and $d y$, then $d s$ is just the change in diagonal (which is close to C)

To find $d s$, just use the Pythagorean Theorem

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}
$$

Important Trick:

$$
\begin{aligned}
d x & =\frac{d x}{d t} d t=x^{\prime}(t) d t \\
d y & =\frac{d y}{d t} d t=y^{\prime}(t) d t
\end{aligned}
$$

So $d s$ is just

$$
\begin{aligned}
d s=\sqrt{(d x)^{2}+(d y)^{2}} & =\sqrt{\left(x^{\prime}(t) d t\right)^{2}+\left(y^{\prime}(t) d t\right)^{2}} \\
& =\sqrt{\left(x^{\prime}(t)\right)^{2}(d t)^{2}+\left(y^{\prime}(t)\right)^{2}(d t)^{2}} \\
& =\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

Finally, to get $\int_{C} f$, just multiply the above by f and integrate:

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

4. 3 dimensions

Video: Integral over a helix
And of course, everything here can be generalized to 3 dimensions: Example:

$$
\int_{C} x^{2}+y^{2}+z^{2} d s
$$

C : Helix parametrized

$$
\begin{aligned}
& x(t)=\cos (t) \\
& y(t)=\sin (t) \\
& z(t)=t \\
&(0 \leq t \leq 6 \pi)
\end{aligned}
$$

(1) Picture:

(2) Parametrize: \downarrow
(3) Integrate:

$$
\begin{aligned}
\int_{C} x^{2}+y^{2}+z^{2} d s & =\int_{0}^{6 \pi}\left((x(t))^{2}+(y(t))^{2}+(z(t))^{2}\right) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} \\
& =\int_{0}^{6 \pi}\left(\cos ^{2}(t)+\sin ^{2}(t)+t^{2}\right) \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}+1^{2}} d t \\
& =\int_{0}^{6 \pi}\left(1+t^{2}\right) \sqrt{2} d t \\
& =\sqrt{2}\left(6 \pi+\frac{(6 \pi)^{3}}{3}\right)
\end{aligned}
$$

[^0]: Date: Monday, January 27, 2020.

