LECTURE 10: LINE INTEGRALS (I)

1. REVIEW: PARAMETRIC EQUATIONS

Video: Parametric Equations

Today: Line Integrals, which essentially boils down to parametric equations, so let's first review the 3 most important parametrizations.

Example 1: Find parametric equations for the circle centered at (2, 3) and radius 4

 ${\it Date} \colon {\rm Monday}, \, {\rm January} \,\, 27, \,\, 2020.$

$$x(t) = 2 + 4\cos(t)$$

$$y(t) = 3 + 4\sin(t)$$

$$(0 \le t \le 2\pi)$$

Example 2: Same but the line segment connecting (1,2) and (3,4)

$$x(t) = (1 - t) 1 + t3 = 1 + 2t$$
$$y(t) = (1 - t) 2 + t4 = 2 + 2t$$
$$(0 \le t \le 1)$$

Note: In case you're having doubts about whether to put t or 1 - t, simply plug in t = 0, in your equations, which should give you (1, 2)

Example 3: Same but the parabola $y = x^2$ connecting (1,1) and (2,4)

$$x(t) = t$$

$$y(t) = t^2 \quad (1 \le t \le 2)$$

2. Line Integrals

Video: Line Integral

Really cool! In calculus, you integrated a function f over an interval [a,b] but today we'll integrate a function over any curve!

Goal: Given a curve C and a function f(x,y), find the area of the fence under f and over C

Notation: $\int_C f(x,y)ds$ = Area under f and over C

Example:

$$\int_C x^2 y \, ds$$

C: Quarter circle $x^2+y^2=4$ in the first quadrant (counterclockwise)

(1) Picture:

(2) Parametrize C:

$$x(t) = 2\cos(t)$$

$$y(t) = 2\sin(t) \quad \left(0 \le t \le \frac{\pi}{2}\right)$$

(3) **Integrate:** Use following fact (will derive it later, but for now think of it as a Jacobian):

$$ds = \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

$$\int_{C} x^{2}y \, ds = \int_{0}^{\frac{\pi}{2}} \frac{(x(t))^{2}(y(t))\sqrt{(x'(t))^{2} + (y'(t))^{2}} \, dt}{= \int_{0}^{\frac{\pi}{2}} (2\cos(t))^{2} 2\sin(t)\sqrt{(-2\sin(t))^{2} + (2\cos(t))^{2}} dt}$$

$$= \int_{0}^{\frac{\pi}{2}} 8\cos^{2}(t)\sin(t)\sqrt{4\sin^{2}(t) + 4\cos^{2}(t)} dt$$

$$= \int_{0}^{\frac{\pi}{2}} 8\cos^{2}(t)\sin(t)\sqrt{4} dt$$

$$= 16 \left[-\frac{1}{3}\cos^{3}(t) \right]_{0}^{\frac{\pi}{2}} \qquad (u = \cos(t))$$

$$= \frac{16}{3}$$

Remarks:

- (1) Small mnemonic: $ds = \sqrt{(dx)^2 + (dy)^2}$ (diagonal length)
- (2) Compare with Length(C) = $\int \sqrt{(x'(t))^2 + (y'(t))^2} dt$ (from Math 2D), so it's like a length, but with height f

Example:

Video: Line Integral Example

$$\int_C y ds$$

C: Line from (2,0) to (5,4)

(1) Picture:

(2) Parametrize:

$$x(t) = (1 - t) 2 + t (5) = 3t + 2$$

 $y(t) = (1 - t) 0 + t (4) = 4t$ $(0 \le t \le 1)$

(3) Integrate:

$$\int_{C} y ds = \int_{0}^{1} y(t) \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

$$= \int_{0}^{1} 4t \sqrt{3^{2} + 4^{2}} dt$$

$$= \int_{0}^{1} 4t(5)$$

$$= \int_{0}^{1} 20t$$

$$= \cdots$$

$$= 10$$

Interpretations

- $\int_C f = \text{Area of fence under } f$, over C
- If f = Force, $\int_C f ds = \text{Work done by } f \text{ over } C$
- If f = Density, then $\int_C f ds = Mass of (wire) C$

Note: For even more practice, you can check out this older video: Line Integral of a Function

3. What is ds?

Video: Line Integral Derivation

Idea: If C is a curve and you change x and y a little bit to get dx and dy, then ds is just the change in diagonal (which is close to C)

To find ds, just use the Pythagorean Theorem

$$ds = \sqrt{(dx)^2 + (dy)^2}$$

Important Trick:

$$dx = \frac{dx}{dt}dt = x'(t)dt$$
$$dy = \frac{dy}{dt}dt = y'(t)dt$$

So ds is just

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{(x'(t)dt)^2 + (y'(t)dt)^2}$$
$$= \sqrt{(x'(t))^2 (dt)^2 + (y'(t))^2 (dt)^2}$$
$$= \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

Finally, to get $\int_C f$, just multiply the above by f and integrate:

$$\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t),y(t))\sqrt{(x'(t))^{2} + (y'(t))^{2}}dt$$

4. 3 DIMENSIONS

Video: Integral over a helix

And of course, everything here can be generalized to 3 dimensions: **Example:**

$$\int_C x^2 + y^2 + z^2 \, ds$$

C: Helix parametrized

$$x(t) = \cos(t)$$

$$y(t) = \sin(t)$$

$$z(t) = t$$

$$(0 \le t \le 6\pi)$$

(1) Picture:

- (2) Parametrize: 🗸
- (3) Integrate:

$$\int_C x^2 + y^2 + z^2 ds = \int_0^{6\pi} \left((x(t))^2 + (y(t))^2 + (z(t))^2 \right) \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}$$

$$= \int_0^{6\pi} \left(\cos^2(t) + \sin^2(t) + t^2 \right) \sqrt{(-\sin(t))^2 + (\cos(t))^2 + 1^2} dt$$

$$= \int_0^{6\pi} \left(1 + t^2 \right) \sqrt{2} dt$$

$$= \sqrt{2} \left(6\pi + \frac{(6\pi)^3}{3} \right)$$