LECTURE 2: TRIPLE INTEGRALS

1. Gaussian Integral

Video: Gaussian Integral
Warning: This is the most exciting example of the course! Nothing in your life will be as exciting as this!

Recall: (Math 2B) $e^{-x^{2}}$ does not have an antiderivative, and yet...

Example: Calculate $\int_{-\infty}^{\infty} e^{-x^{2}} d x$
Using Multivariable Calculus, we're going to do the impossible
(1) Trick: Let $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x \geq 0$

But also $I=\int_{-\infty}^{\infty} e^{-y^{2}} d y$
(doesn't matter which variable we're using; potato potahto)

[^0](2) Multiply:
\[

$$
\begin{aligned}
I^{2} & =(I)(I) \\
& =\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right) e^{-y^{2}} d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}} e^{-y^{2}} d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \\
& =2 \pi \int_{0}^{\infty} r e^{-r^{2}} d r \\
& =2 \pi\left[\left(-\frac{1}{2}\right) e^{-r^{2}}\right]_{r=0}^{r=\infty} \quad\left(u-s u b: u=-r^{2}\right) \\
& =2 \pi\left(-\frac{1}{2} e^{-\infty}+\frac{1}{2} e^{0}\right) \\
& =2 \pi\left(\frac{1}{2}\right) \\
& =\pi
\end{aligned}
$$
\]

(3) $I^{2}=\pi \Rightarrow I=\sqrt{\pi}($ since $I>0)$

(4) Answer:

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Note: Check out this awesome playlist for 12 ways of evaluating this integral: Gaussian Integral 12 Ways

2. Triple Integrals

Now if you thought that was fun, today will be triple the fun because we'll cover triple integrals! The cool thing is that it's the exact same process: Picture, Inequality, Integrate

Example: Calculate

$$
\iiint_{E} 6 z d x d y d z
$$

where $E=$ Tetrahedron below the plane $4 x+2 y+z=4($ and $x, y \geq 0)$
(1) Picture: How to draw this???

Trick: To draw E, find the intercepts of $4 x+2 y+z=4$

$$
\begin{array}{ll}
z-\operatorname{intercept}(x=0, y=0) & 4(0)+2(0)+z=4 \Rightarrow z=4 \\
x-\text { intercept }(y=0, z=0) & 4 x+2(0)+0=4 \Rightarrow x=1 \\
y \text {-intercept }(x=0, z=0) & 4(0)+2 y+0=4 \Rightarrow y=2
\end{array}
$$

(2) This time: Smaller $\leq z \leq$ Bigger $\Rightarrow 0 \leq z \leq$ Plane But $4 x+2 y+z=4 \Rightarrow z=4-4 x-2 y$ Hence $0 \leq z \leq 4-4 x-2 y$.
(3) Find D

We found an inequality for z and now we need inequalities for y and x :

Notice: $z=0$ in D

Smaller $\leq y \leq$ Bigger $\Rightarrow 0 \leq y \leq 2-2 x$
Left $\leq x \leq$ Right $\Rightarrow 0 \leq x \leq 1$
(4) Evaluate the integral

$$
\begin{aligned}
\iiint_{E} 6 z d x d y d z= & \int_{0}^{1} \int_{0}^{2-2 x} \int_{0}^{4-4 x-2 y} 6 z d z d y d x \\
= & \int_{0}^{1} \int_{0}^{2-2 x}\left[3 z^{2}\right]_{z=0}^{z=4-4 x-2 y} d y d x \\
= & \int_{0}^{1} \int_{0}^{2-2 x} 3(4-4 x-2 y)^{2} d y d x \\
& \left(\operatorname{Think}(C-2 y)^{2}\right) \\
= & \int_{0}^{1}\left[3\left(\frac{1}{-2}\right)\left(\frac{1}{3}\right)(4-4 x-2 y)^{3}\right]_{y=0}^{y=2-2 x} d x \\
= & -\frac{1}{2} \int_{0}^{1}(4-4 x-2(2-2 x))^{3}-(4-4 x-2(0))^{3} d x \\
= & \frac{1}{2} \int_{0}^{1}(4-4 x)^{3} d x \\
= & \cdots \\
= & 8
\end{aligned}
$$

Warning: A triple integral generally doesn't calculate a volume (unless the function is 1).

Interpretation 1: The hypervolume (4 dimensional volume) under $6 z$ and over E is 8 .

Interpretation 2: The solid E with density $6 z$ has mass 8

3. More Practice

Example: $\iiint_{E} 2 z d x d y d z$, where
E is the region between $x^{2}+y^{2}=4$ and $z^{2}-x^{2}-y^{2}=5$
Note: This question was on the midterm I gave in Fall 2018.
(1) Picture:
$x^{2}+y^{2}=4$ (no z here!) is a cylinder in the z-direction $z^{2}-x^{2}-y^{2}=5$: Two minuses, hence a hyperboloid of two sheets ($=2$ cups)

(2) Small $\leq z \leq \operatorname{Big}$

Here Small = lower part of hyperboloid and Big = upper part of hyperboloid

$$
\begin{array}{r}
-x^{2}-y^{2}+z^{2}=5 \\
\Rightarrow z^{2}=x^{2}+y^{2}+5 \\
\Rightarrow z= \pm \sqrt{x^{2}+y^{2}+5} \\
\quad \Rightarrow z= \pm \sqrt{r^{2}+5}
\end{array}
$$

Hence: $-\sqrt{r^{2}+5} \leq z \leq \sqrt{r^{2}+5}$
(3) Draw D

Either do the usual intersection business, or just look at the picture ${ }^{17}$ to eventually get $x^{2}+y^{2}=4$, so D is a disk of radius 2.

[^1]which you can describe with $0 \leq r \leq 2,0 \leq \theta \leq 2 \pi$
(4) Integrate
\[

$$
\begin{aligned}
\iiint_{E} 2 z d x d y d z & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{-\sqrt{r^{2}+5}}^{\sqrt{r^{2}+5}} 2 z r d z d r d \theta \\
& =2 \pi \int_{0}^{2}\left[z^{2}\right]_{z=-\sqrt{r^{2}+5}}^{z=\sqrt{r^{2}}} r d r \\
& =2 \pi \int_{0}^{2}\left[\left(\sqrt{r^{2}+5}\right)^{2}-\left(-\sqrt{r^{2}+5}\right)^{2}\right] r d r \\
& =2 \pi \int_{0}^{2}\left[\left(r^{2}+5\right)-\left(r^{2}+5\right)\right] r d r \\
& =0
\end{aligned}
$$
\]

Note: This is sometimes called cylindrical coordinates, where we do polar coordinates in x and y but don't do anything to z, more on that in section 15.7

[^0]: Date: Wednesday, January 8, 2020.

[^1]: ${ }^{1}$ See how nice it is to have a picture?

